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Analytical description for the chiral nematic state in terms of molecular parameters
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An analytical description for helical twisting in chiral liquid crystals is derived, which explores the corre-
lation between the macroscopic properties of a liquid crystal and the parameters of single molecules. This
theory is based on a simple model of a spiral-like rigid molecules that possess a limited number of parameters,
each having transparent geometrical meaning. Expressions for the macroscopic helical pitch in the chiral
nematic phase and the nematic order parameters were obtained in terms of molecular parameters. The theory
explains the experimentally observed helical sense inversions induced by a change of temperature or mutual
concentration of components in mixtures. It is also shown that the helical sense inversion may be observed in
the process of denaturation of polypeptides. Different reasons for helical sense inversions were identified, such
as competition between the dispersion attraction and the steric repulsion, distinct mechanisms of the steric
packing for different kinds of molecules, and biaxiality of molecules.
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I. INTRODUCTION

Principles of the molecular organization in chiral m
sophases are of the great interest since they throw ligh
the macroscopic properties of the liquid crystals. Differe
liquid crystals under similar conditions may behave in diffe
ent ways. For example, variation of temperature, concen
tion, and other external parameters may lead to the chang
the optical activity in one sample and may not in the oth
one. The question arises: what is the correlation between
macroscopic parameters of the liquid crystal~such as the
nematic order parameter and the twisting power! and the
microscopic features of single molecules~such as their shap
and interaction!?

In an earlier paper@1# we derived the mean-field theory o
the chiral nematic state, based on the principles of the st
tical physics and the continuum theory. It allowed us to
timate numerically the value of the helical twisting power f
the liquid crystal consisting of the molecules from our p
vious model. Nevertheless, that model was difficult to u
and the analytical expression for the helical pitch in terms
molecular parameters was not obtained.

In this paper we suggest a method that explores the
relation between the molecular parameters and the ma
scopic properties of a liquid crystal. We use a model of
biaxial spiral-like molecule with a small set of paramete
having transparent geometrical meaning. Any pair of m
ecules possesses dispersion attraction as well as steric r
sion. The resulting expressions predict the conditions for
helical sense inversion in an arbitrary liquid crystal. Vi
versa, using these expressions one may estimate the mo
lar parameters needed for the helical sense inversion in
appropriate conditions.

In our theoretical studies we focus on the three situati
that are investigated experimentally by many authors. F
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we consider the pure liquid crystal, consisting of identic
chiral molecules. In correspondence with the experim
@2–6#, the helical sense inversion with the temperature va
tion may take place in a chiral nematic even in the case
the stable molecules, having the same handedness. We
centrate on the two reasons for the helical sense invers
the competition of the steric repulsion with the dispersi
attraction and the biaxiality of the molecules. These two f
tors were noticed by many authors to be responsible for v
ous helical sense inversions in different classes of the ch
nematics. The detailed review of these investigations is p
sented, for example, in Ref.@7#. To combine the dispersion
attraction together with the steric repulsion, many auth
@8–11# used a special effective potential that took into a
count both effects. Thus, the resulting expression for the
lical wave number contained both the dispersion and st
contributions. The signs of these contributions, however,
mained undetermined since the effective potential was
accurately associated with the parameters of a molec
model. Recently the importance of a molecular biaxial
was recognized by several authors@12,13#. In this paper we
present a quantitative scheme that allows one to estimate
effect of the molecular biaxiality.

The second experimentally observed situation is the h
cal sense inversion in binary mixtures with a change in
mutual concentration of the components. It was establis
that inversion may take place even in the case when
component is achiral@14–17#. In this paper, we notice and
prove analytically that the identical molecules and the unl
molecules have different mechanisms of steric packing. T
situation, as we suppose, is responsible for the helical se
inversion in mixtures of chiral and achiral molecules.

Finally, we consider the possibility of the helical sen
inversion in polypeptides which may happen during the p
cess of denaturation. Since our analytical expressions for
helical wave number contain molecular parameters exp
itly, one can simply change some of them to obtain the h
cal sense inversion. Molecular length is one of these par
eters. On the other hand, it is well known@18# that the long
spiral molecules of protein melt into small pieces during d
©2003 The American Physical Society04-1
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naturation. Therefore, the possibility of the helical sense
version exists. This situation is briefly discussed in t
present paper where we suggest a simple scheme of den
ation.

The paper is arranged as follows. In Sec. II we introdu
the alternative effective molecular interaction and der
analytical expressions for the nematic order parameters
helical wave number. In Sec. III we suggest our models
chiral and achiral molecules and define the effective inter
tion between similar and dissimular molecules. In Sec. IV
analyze different situations, such as variations of tempe
ture, concentration, or molecular length which may cause
helical sense inversions. Finally, in Sec. V we present
main results of the paper.

II. EFFECTIVE INTERACTION OF CHIRAL MOLECULES
AND THE CHOLESTERIC STATE

In this section, we suggest a description for the interact
between anisotropic chiral molecules, which determin
macroscopic properties of the liquid crystal: the nematic
der parameters and the helical twisting power. In the co
mon case of a multicomponent system, the prime nem
order parameterSm and the biaxiality order parameterDm of
the componentm obey the generalized Maier-Saupe theo
@1#:

Sm5
1

I m
E

21

1

dtE
0

2p

dc P2 ~ t !exp@UMF
m ~ t,c!#,

Dm5
1

I m
E

21

1

dtE
0

2p

dc
3

2
~12t2!cos~2 c!

3exp@UMF
m ~ t,c!#, ~1!

whereI m are the normalizing integrals,

I m5E
21

1

d tE
0

2p

dcexp@UMF
m ~ t,c!#, ~2!

parameterst[ cosu andc describe the orientation of a mo
ecule with respect to the director, and the mean-field ene
UMF

m of the componentm is interpolated as follows:

UMF
m ~ t,c!'

r

kB T (
n51

t

hn$@J0(mn)
202 Sn1M0(mn)

202 Dn#P2~ t !

1@M0(nm)
202 Sn1Q0(nm)

202 Dn# 3
2 ~12t2!cos~2 c!%,

~3!

wheret is the total number of components in the system
at least one of the components is chiral, then cholest
distortion of the nematic state takes place. This is usu
described@19–21# in terms of elastic constants. Then th
helical wave number is determined by the following expr
sion:
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q5
k2

K2
, ~4!

where K2 is the twist elastic constant andk2 is a pseudo-
scalar parameter, which is sensitive to molecular chiral
The gradient expansion of the director results in the follo
ing interpolations for the parametersk2 andK2 @1#:

k2'
1

6
r2 (

m,n51

t

hm hn@J1(mn)
212 SmSn1M1(mn)

212 SmDn

1M1(nm)
212 SnDm1Q1(mn)

212 DmDn#, ~5!

K2'
1

2
r2 (

m,n51

t

hmhn@J2(mn)
202 SmSn1M2(mn)

202 SmDn

1M2(nm)
202 SnDm1Q2(mn)

202 DmDn#. ~6!

The coefficientsJn(mn)
lLl , Mn(mn)

lLl , andQn(mn)
lLl in Eqs.~3!, ~5!,

and~6! are the moments of the corresponding coupling c
stants:

Jn(mn)
lLl 5E

0

`

dr12r 12
n12Jmn

lLl~r 12!,

Mn(mn)
lLl 5E

0

`

dr12r 12
n12Mmn

lLl~r 12!, ~7!

Qn(mn)
lLl 5E

0

`

dr12r 12
n12Qmn

lLl~r 12!.

The coupling constantsJmn
lLl(r 12), Mmn

lLl(r 12), andQmn
lLl(r 12)

in Eq. ~7! are the coefficients of the expansion of the effe
tive intermolecular potentialVe f

mn in a complete set of spheri
cal invariants@1,22–25#. The effective interactionVe f

mn of a
molecule of typem with a molecule of typen is an even
function with the respect to the orientation of both molecu
~since the phase observed is nonpolar!, but it is not even with
respect to the orientation of intermolecular vectorr12 ~since
the cholesteric distortion is observed!. One can split the ef-
fective interactionVe f

mn into a large homogeneous partV0
mn

~which is even with respect to the orientation of the interm
lecular vector! and a small energy of distortionVd

mn ~which is
odd with respect to the orientation of the intermolecular v
tor!:

Ve f
mn~1,2!5V0

mn~1,2!1Vd
mn~1,2!. ~8!

Then the homogeneous partV0
mn(1,2) expands in spherica

invariants as
4-2
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V0
mn~1,2!5Jmn

0001Jmn
202P2~a1•a2!1Jnm

220P2~a1•u12!1Jmn
022P2~a2•u12!1Mmn

202$P2~a1•b2!2P2~a1•c2!%1M nm
202$P2~a2•b1!

2P2~a2•c1!%1Mmn
220$P2~b1•u12!2P2~c1•u12!%1M nm

022$P2~b2•u21!2P2~c2•u21!%1Qmn
202$P2~b1•b2!

2P2~b1•c2!2P2~b2•c1!1P2~c2•c1!%1•••, ~9!

and the energy of distortionVd
mn(1,2) has the following expansion:

Vd
mn~1,2!5Jmn

212~a1•a2!~@a13a2#•u12!1Mmn
212$~a1•b2!~@a13b2#•u12!2~a1•c2!~@a13c2#•u12!%1M nm

212$~a2•b1!

3~@a23b1#•u21!2~a2•c1!~@a23c1#•u21!%1Qmn
212$~b1•b2!~@b13b2#•u12!2~b1•c2!~@b13c2#•u12!

1~c2•c1!~@c23c1#•u21!2~b2•c1!~@b23c1#•u21!%1•••, ~10!
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where the orientation of the first molecule is determined
the set of the orthogonal unit vectors (a1 , b1 , c1), the ori-
entation of the second molecule is determined by the vec
(a2 , b2 , c2), and the direction of the intermolecular vect
r12 is determined by the unit vectoru1252u21. We assume
that the axesa1 , a2 correspond to the principal elongation
the molecules and call them ‘‘long axes.’’ The pairs (b1 , c1)
and (b2 , c2) are called ‘‘short axes.’’ Taking into accoun
that in Eqs.~9! and ~10! the only coefficients with equa
indicesl andl are used, it is enough to estimate for each p
of componentsm andn the three achiral coupling constan
Jmn

202(r 12), Mmn
202(r 12), Qmn

202(r 12) and the three chiral coupling
constantsJmn

212(r 12), Mmn
212(r 12), Qmn

212(r 12). One notes that the
constantsJmn

lLl (r 12) and Qmn
lLl (r 12) are also symmetrical with

respect to the commutation of the indicesm andn:

Jmn
lLl ~r 12!5Jnm

lLl ~r 12!, ~11!

Qmn
lLl ~r 12!5Qnm

lLl ~r 12!, ~12!

since they describe the correlation between the same a
the long axis of the first molecule with the long axis of t
second molecule, or the short axes of the first molecule w
the short axes of the second molecule. At the same time
constantMmn

lLl (r 12) is not symmetrical with respect to th
same commutation:

Mmn
lLl ~r 12!ÞM nm

lLl ~r 12!, ~13!

since it describes the correlation between different axes:
long axis of the first molecule with the short axes of t
second molecule. Let us estimate the coupling constants

FIG. 1. Three mutual orientations of biaxial molecules ‘‘1’’ an
‘‘2’’ which are used for calculation of the coupling constants.
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ing Fig. 1, where the three mutual orientations of the int
acting molecules are presented. In Fig. 1~a! the long axis of
the first moleculea1 is parallel to the long axis of the secon
moleculea2 and is parallel to the intermolecular vectoru12.
The angle between the corresponding short axes is equ
a. Figure 1~b! is obtained from Fig. 1~a! by the change
(ai ,bi ,ci)→(bi ,ci ,ai), a→b, (i 51,2) and Fig. 1~c! is ob-
tained by the following change: (bi ,ci ,ai)→(ci ,ai ,bi),
b→g. Rewriting Eq. ~10! in the cases presented in Fig
1~a!–1~c!, then differentiating it with respect to the corre
sponding variable angle (a, b or g) and solving the result-
ing equations for the chiral coupling constantsJmn

212, Mmn
212

andQmn
212, one obtains

Jmn
2125

1

2 S ]Ve f
mn

]g
U

g50

1
]Ve f

mn

]b
U

b50
D 2

1

4

]Ve f
mn

]a
U

a50

Mmn
2121M nm

2125
1

2 S ]Ve f
mn

]g
U

g50

2
]Ve f

mn

]b
U

b50
D , ~14!

Qmn
2125

1

4

]Ve f
mn

]a
U

a50

.

Rewriting Eq.~9! in the cases presented in Figs. 1~a!–1~c!,
then differentiating it twice with respect to the correspondi
variable angle (a, b or g) and solving the resulting equa
tions for the achiral coupling constantsJmn

202, Mmm
202, and

Qmn
202, one obtains

Jmn
20252

1

6 S ]2Ve f
mn

]g2 U
g50

1
]2Ve f

mn

]b2 U
b50

D 1
1

12

]2Ve f
mn

]a2 U
a50

,

Mmn
2021M nm

20252
1

6 S ]2Ve f
mn

]g2 U
g50

2
]2Ve f

mn

]b2 U
b50

D , ~15!

Qmn
20252

1

12

]2Ve f
mn

]a2 U
a50

.

Thus, the chiral coupling constantsJmn
212, Mmn

212, and Qmn
212

appear to depend on the first derivatives of the effective
4-3
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tential Ve f
mn with respect to the principal rotation angle

whereas the achiral coupling constantsJmn
202, Mmn

202, andQmn
202

appear to depend on the second derivatives of the effec
potential with respect to same angles. To demonstrate
accuracy of this interpolation, let us fix two equivalent qu
siuniaxial@37# chiral molecules some distance apart. To si
plify the expression for the effective intermolecular potent
Ve f, let each molecule rotate only in the plane perpendicu
to the intermolecular vectorr12. Then one obtains instead o
Eqs.~8!–~10! the following expression for the effective po
tential:

Ve f~g!5J0001J202P2~cosg!1J212cosg sing1•••,
~16!

whereg is the angle between the principal molecular axesa1
and a2. The first and the second terms in Eq.~16! describe
the large homogeneous part of the potential, whereas
third term is a small chiral addition, which is responsible f
the helicity. The coupling constantsJ202 and J212 are inter-
polated then by the following simple expressions:

J212'
]Ve f

]g U
g50

, ~17!

J202'2
1

3

]2Ve f

]g2 U
g50

, ~18!

which are analogous to Eqs.~14! and ~15!. The dependence
of the effective potentialVe f on angleg is presented in Fig.
2. Curve 1 corresponds to the site-site interaction@26,27#
between chiral molecules. Let us call it ‘‘real’’ potentia
Curve 2 in Fig. 2 corresponds to the model potential~16!
with constantsJ212 and J202 determined by Eqs.~17! and
~18!, respectively, and the isotropic constantJ000 determined
by the following expression:

FIG. 2. Dependence of the effective potentialVe f on the angleg
between the long molecular axesa1 and a2: ~1! ‘‘real’’ site-site
potential;~2! new model potential@achiral coupling constantsJ202

andJ000 are determined by Eqs.~18! and~19!#; ~3! standard model
potential@the same constants are determined by Eqs.~20! and~21!#.
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J000'S Ve f1
1

3

]2Ve f

]g2 D U
g50

. ~19!

One notes that curve 2 fits curve 1 in the vicinity of the mo
probable pointg50 and the largest divergence of curves
and 2 arises in the least probable pointsg56p/2. However,
the isotropic constantJ000 is never used in the study of th
cholesteric ordering. In other words, the absolute value of
effective potential makes no sense. On the contrary, the
isotropic constantJ202 determines the width of the peak i
curve 2 and the chiral constantJ212 determines its declensio
from pointg50. Therefore, the effective potential~16! with
constantsJ212, J202, andJ000, determined by Eqs.~17!, ~18!
and,~19! respectively, demonstrates the ‘‘true’’ position an
width of the peak. This approach essentially differs from t
standard interpolation@1# that ‘‘cares’’ about the depth of the
effective potential instead of its width:

J202' 2
3 ~Ve f

i 2Ve f
' !, ~20!

J000' 1
3 ~Ve f

i 12Ve f
' !. ~21!

HereVe f
i andVe f

' are the values of the effective potential
the orientation with parallel and perpendicular princip
axes, respectively. The effective potential~16! with constants
J212, J202, andJ000, determined by Eqs.~17!, ~20! and ~21!,
respectively, fits the ‘‘real’’ potential in pointsg50 andg
56p/2 ~see curve 3 in Fig. 2!. Nevertheless, the peak i
curve 3 appears to be unsupportably wide. This leads to
mistake in the vicinity of the most probable orientation
molecules, which corresponds tog50. Therefore, interpola-
tion ~20! for the anisotropic constantJ202 is less preferable
than interpolation~18!.

In the general case of biaxial molecules the anisotro
coupling constants are determined by Eqs.~14! and ~15!.
Substituting Eqs.~14! and~15! into Eqs.~10! and~9!, respec-
tively, one obtains the model potential~8! fitting the ‘‘real’’
potential in the vicinity of the orientation with parallel co
responding axes (a1ia2 , b1ib2 , c1ic2) in the three cases
presented in Fig. 1, which differ in the direction of the inte
molecular vectorr12. Since the relative orientation of th
two molecules with parallel corresponding axes is the m
probable in the nematic state, interpolations~14! and ~15!
demonstrate fitting in the most important area. In the ch
nematic state, the most probable angles between corresp
ing axes of the two molecules may be equal to a small n
zero values. Nevertheless, one may assume that the ori
tion with parallel corresponding axes belongs to t
‘‘vicinity’’ of the most probable orientation, since the chole
teric distortion usually accounts for only a few thousand
of the molecular dimension.

Let us determine the effective intermolecular potential
the same manner as in Refs.@28–31#. The two factors that
are known to influence the behavior of chiral nematic are
steric repulsion and the dispersion attraction of molecule

Ve f
mn~1,2![^2qkBTQmn~r122j12!

2@12Qmn~r122j12!#Umn~1,2!&. ~22!
4-4
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In Eq. ~22! the step functionQmn(r122j12) represents the
excluded volume effects,Umn(1,2) is dispersion interaction
between the molecules 1 and 2,kB is the Boltzmann con-
stant,T is the temperature, and the factorq depends on the
packing fractionF. It has the following expression in th
Parsons approach@32,33#:

q5
u ln~12F!u

F
. ~23!

In the case of low density one obtainsq'1, as in Onsager’s
theory@34#. The angular brackets in Eq.~22! denote the part
of the corresponding expression which is even with resp
to the rotation of any moleculei 51,2 by the anglep around
any of its axesai , bi or ci . The coefficientsJ0(mn)

202 , M0(mn)
202 ,

and Q0(mn)
202 , which are used in Eq.~3! for the mean-field

energyUMF
m , the coefficientsJ1(mn)

212 , M1(mn)
212 , and Q1(mn)

212 ,
which are used in Eq.~5! for the pseudoscalark2, and the
coefficientsJ2(mn)

202 , M2(mn)
202 , andQ2(mn)

202 , which are used in
Eq. ~6! for the twist elastic constantK2, may be obtained
after the corresponding integration of the coupling consta
in Eq. ~7!. Substituting Eqs.~14! and ~15! into Eq. ~7! and
taking into account Eq.~22! for the effective potential, one
obtains the expressions for the coefficientsJn(mn)

lLl , Mn(mn)
lLl ,

andQn(mn)
lLl that appear to contain the integrals of the follo

ing two types:

E
0

`

dr12r 12
n @Ve f

mn~r 12!#8

52qkBT^jmn
n jmn8 &2K Ej

mn

`

dr12r 12
n Umn8 ~r 12!L , ~24!

E
0

`

dr12r 12
n @Ve f

mn~r 12!#9

52qkBT^jmn
n jmn9 &12^jmn

n jmn8 Umn8 ~jmn!&

2nqkBT^jmn
n21~jmn8 !2&2K Ej

mn

`

dr12r 12
n Umn9 ~r 12!L ,

~25!

where jmn is the minimal distance between a molecule
type m and a molecule of typen, which obviously depends
on the orientation of both molecules. The first and seco
derivatives of the minimal distancejmn and the first and
second derivatives of the dispersion attractionUmn(r 12) in
Eqs.~24! and~25! are considered with respect to the variab
anglesa, b, or g in correspondence with Fig. 1.

III. MODEL OF A CHIRAL MOLECULE AND THE
MOMENTS OF COUPLING CONSTANTS

To determine the minimal distance between molecu
and to define their dispersion interaction, let us consider
universal molecular model presented in Fig. 3. A molec
consists of a rigid spiral-like tube with diameterd. In the
common case, this helix has unequal semiaxessb and sc,
03170
ct

ts

f

d

s
e

e

which define the direction of the corresponding short axeb
and c. One notes that the main section of the tube is
parallel to the plane of short axesb and c. Its inclination
depends on the helical wave numberk, semiaxessb , sc and,
in the biaxial casesbÞsc , position t along the principal
molecular axisa. Let us fix parametert50 for the center of
molecule. Then the parametert ranges from2,/2 to ,/2,
where, is the length of the molecule. Each end of the tube
capped by the semisphere of the same diameterd. Any layer
t of such a molecule has the following coordinates~the co-
ordinate axesx, y, andz are parallel to the molecular axesb,
c, anda, respectively!:

S x

y

z
D 5S sb cos~kt1w!

sc sin~kt1w!

t
D . ~26!

Herew is the structural parameter corresponding to the t
of the molecular centert50 around the principal molecula
axis a with respect to the short axisb. For simplicity of the
following expressions, let us suppose that

,@d, kd*1, sb!d, sc!d. ~27!

Most of the chiral molecules are known to satisfy this co
straint. The dispersion interaction of real molecules cons
of the atomic dispersion contributions. If the dispersion
teraction of the separate atoms with each other is isotro
the only reason for the nematic ordering and helicity is
anisotropic and chiral composition of these atoms inside
molecules. The aggregate interaction of the two molecule
called ‘‘site-site’’ potential@26,27#. It cannot be expresse
analytically in terms of the relative position and orientati
of molecules. Nevertheless, in the simple case of ident
atoms ~or atomic groups! constituting the same molecule
one can change over from the summation by atoms to

FIG. 3. Molecular model:~a! intensively twisted;~b! weakly
twisted; ~c! achiral.
4-5
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A. V. EMELYANENKO PHYSICAL REVIEW E 67, 031704 ~2003!
integration along the molecular bodies. This can be don
the distance between the neighboring atoms~or atomic
groups! is much less than the molecular length,. Suppose
that an arbitrary layert1 of the first molecule attracts a
arbitrary layert2 of the second molecule via standard disp
sion potential:

DU~ t1 ,t2!;2
1

Dr 12
6 ~ t1 ,t2!

, ~28!

whereDr 12(t1 ,t2) is the distance between the correspond
layers. If both molecules satisfy constraint~27!, one can
change over with the unity Jacobian from integrating alo
the helical molecular bodies to integrating along their pr
cipal axes, and the aggregate dispersion interaction ma
approximated by the following double integral:

U125E
2,

1
/2

,1/2

dt1E
2,

2
/2

,2/2

dt2 DU~ t1 ,t2!. ~29!

Potential~29! obviously depends on the relative position a
orientation of the interacting molecules. Let us consider t
chiral molecules having parallel~or antiparallel! correspond-
ing axes in the three cases presented in Figs. 1~a!–1~c!. One
notes that a biaxial chiral molecule is asymmetric with
spect to its molecular axesa, b, andc. Any molecule in the
pair is therefore assumed to have one of the four odd or
tations as presented in Fig. 4. Let the parameterw in Eq. ~26!
describing the structure of a molecule correspond to F
4~a!. The orientation presented in Fig. 4~b! is obtained from

FIG. 4. Four odd orientations of a molecule which have eq
probabilities.
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the orientation presented in Fig. 4~a! after the rotation of the
whole molecule around its long axisa by the anglep. This
orientation is described by the same Eq.~26! with the sub-
stitution w→w1p. The orientations presented in Figs. 4~c!
and 4~d! are obtained from the orientation presented in F
4~a! after the rotation of the molecule around its short axisb
or c respectively, by anglep. These orientations are de
scribed by the same Eq.~26! with the substitution$w→
2w,t→2t% or $w→2w1p,t→2t%. One can see that only
four different orientations of the two molecules having pa
allel or antiparallel axes are possible.

Let us first consider a pair of identical molecules. T
relative odd orientations of such a pair may be described
terms of two parametersw7[(w27w1)/2, where both pa-
rametersw1 andw2 may be equal tow, w1p, 2w or 2w
1p, depending on the choice of the odd orientation of m
ecules 1 and 2. The total set of parametersw7 is presented in
Table I, where the short symbolization of the correspond
odd orientation is given in the first column. For example, t
orientation with parallel long axes and antiparallel short a
is symbolized as$a, 2b, 2c%. The odd orientations have
equal probabilities, since the phase observed is nonp
Thus, the angular brackets in Eqs.~24! and~25! assume sim-
ply an arithmetic mean over the four orientations defined
Table I. Let us enumerate them by indexi 51, . . . ,4increas-
ing with the growing minimal distance between molecule
One notes that enumeration will be different in the ca
presented in Figs. 1~a!–1~c!. Accordingly to the scheme use
in Sec. II @see Eqs.~14! and ~15!#, the ‘‘end-to-end’’ orien-
tation presented in Fig. 1~a! determines only the coefficient
Q0,2(mn)

202 andQ1(mn)
212 describing, respectively, the achiral an

chiral interactions between the short molecular axes. I
proved in Appendix B that

Q0(mn)
202 ;Q2(mn)

202 ;Q1(mn)
212 ;~s/d!4, ~30!

wheres is the geometric mean of the parameterssb andsc .
Thus, all the coefficientsQ0(mn)

202 , Q2(mn)
202 andQ1(mn)

212 may be
neglected with an error;(s/d)4 which becomes insufficien
even fors/d;0.5. It may be proved that Eq.~30! is also
valid in the case of two dissimilar molecules, in suppositi
thats is an arithmetic mean of the corresponding parame
for two molecules. Performing calculations presented in A
pendix A, one obtains the following expressions for the mi
mal distance between two identical chiral molecules in
‘‘side-by-side’’ orientations presented in Figs. 1~b!, 1~c! and

l

TABLE I. Set of the parametersw7 for two molecules having
parallel or antiparallel axesa, b, or c. For example, the orientation
with parallel long axes and antiparallel short axes is symbolized
$a,2b,2c%.

Orientation w2 w1

a,b,c 0 w
a,2b,2c p/2 w1p/2
2a,b,2c 2w 0
2a,2b,c 2w1p/2 p/2
4-6
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the first derivative of the minimal distance with respect to
corresponding rotational angle (b or g) in the caseb50 or
g50:

jb,c5Ad22~2t2!212sb,cusin~kt21w2!u, ~31!

jb,c8 52ksbsccos2~kt21w2!. ~32!

Here the parametert2 (w2) is the root of the following
equation:

ksb,ccos~kt21w2!Ad22~2t2!2562t2, ~33!

where the ‘‘2 ’’ sign corresponds to the case2p,w2

12pn<0 (n is integer!, the ‘‘1 ’’ sign corresponds to the
case 0,w212pn<p, and thew2 parameter is equal to
one of the four values presented in Table I. Performing c
culations presented in Appendix B and taking into acco
Eq. ~24!, one obtains in supposition~27! the following ex-
pressions for the chiral coefficientsJ1(mm)

212 andM1(mm)
212 :

J1(mm)
212 /d452

1

8
qkBT(

i 51

4

@jc8~ i !jc
3~ i !1jb8~ i !jb

3~ i !#/d4

2
1

128
J0

sbsc

d2
~kd!3

,

d
„@S4,1

51~1,4!

1S4,1
52~2,3!cos~2w!#2$C4,0

51~2,3!1@C4,0
52~1,4!

2B2#cos~2w!%cos~k, !2@S4,0
51~2,3!

1S4,0
52~1,4!cos~2w!#sin~k, !…, ~34!

M1(mm)
212 /d452

1

16
qkBT(

i 51

4

@jc8~ i !jc
3~ i !2jb8~ i !jb

3~ i !#/d4

2
1

256
J0

sbsc

d2
~kd!3

,

d
„@S4,1

52~1,4!

1S4,1
51~2,3!cos~2w!#2$C4,0

52~2,3!1@C4,0
51~1,4!

2B1#cos~2w!%cos~k, !2@S4,0
52~2,3!

1S4,0
51~1,4!cos~2w!#sin~k, !…, ~35!

whereJ0 is the constant having the dimension of energy a
index i denotes the number of the odd orientation from Ta
I, increasing with the growing minimal distance. The para
etersB6, Cm,n

k6 ( i , j ) andSm,n
k6 ( i , j ) in Eqs.~34! and ~35! are

determined, respectively, by the following expressions:

B6[
105p

8
k24(

i 51

4

@jc
24~ i !6jb

24~ i !#, ~36!

Cm,n
k6 ~ i , j ![Cm,n

k6 ~ i !2Cm,n
k6 ~ j !,

Sm,n
k6 ~ i , j ![Sm,n

k6 ~ i !2Sm,n
k6 ~ j !, ~37!

where

Cm,n
k6 ~ i ![Cm,n

k
„kjc~ i !…6Cm,n

k
„kjb~ i !…,

Sm,n
k6 ~ i ![Sm,n

k
„kjc~ i !…6Sm,n

k
„kjb~ i !…, ~38!
03170
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and where the functionsCm,n
k (x) andSm,n

k (x) are determined
by Eqs.~E1! and ~E2! ~see Appendix E!, respectively. Here
we present the analytical expressions for functionsS4,1

5 (x),
C4,0

5 (x) andS4,0
5 (x) which are used in Eqs.~34! and ~35!:

S4,1
5 ~x![768E

0

`

dtE
x

`

dr
r 4t sint

@r 21t2#5

5S 2

3
15x2115x22D3p

2

3exp~2x!1
3p

2
Ei~2x!, ~39!

C4,0
5 ~x![768E

0

`

dtE
x

`

dr
r 4cost

@r 21t2#5

5S 1

3
x2115x22114x23114x24D15p

8

3exp~2x!2
3p

8
Ei~2x!, ~40!

S4,0
5 ~x![768E

0

`

dtE
x

`

dr
r 4sint

@r 21t2#5

5~5x22114x24!
15

8
E2~x!

1S 1

3
x21114x23D15

8
E1~x!

2
3

4
x212

41

2
x231

3

4
Q~x!, ~41!

where

E7~x![ exp~2x!Ei~x!7 exp~x!Ei~2x!, ~42!

Q~x![E
0

`1

t Fp2 2arctanS x

t D Gsin~ t !dt. ~43!

The first term in Eqs.~34! and ~35! corresponds to chirality
of the steric repulsion, and the second term correspond
chirality of the dispersion attraction. One notes that in t
case sbÞsc both chiral coefficientsJ1(mm)

212 and M1(mm)
212

strongly depend on the molecular structural parameterw.
The corresponding dependences are presented in Fig. 5
J0 /kB51300 K, T5300 K and the volume fractionF
50.6. Curves~1!–~3! in Fig. 5 correspond to the variation
of the coefficientJ1(mm)

212 in the casessb /sc51, 1.4 and 2,
respectively. Curves~4!–~6! correspond to the variations o
the coefficientM1(mm)

212 in the same three cases. One no
that the behavior of the coefficientM1(mm)

212 is almost indepen-
dent on the relationsb /sc , whereas the behavior of th
coefficientJ1(mm)

212 strongly depends on this relation.
Taking into account Eq.~25! and using calculations pre

sented in Appendix B, one obtains in supposition~27! the
4-7
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following expressions for the achiral coefficientsJ0(mm)
202 ,

M0(mm)
202 , J2(mm)

202 , andM2(mm)
202 :

J0(mm)
202 /d35

5p

3072
J0S ,

dD 3

d4(
i 51

4

@jc
24~ i !1jb

24~ i !#, ~44!

M0(mm)
202 /d35

5p

6144
J0S ,

dD 3

d4(
i 51

4

@jc
24~ i !2jb

24~ i !#, ~45!

J2(mm)
202 /d55

5p

1536
J0S ,

dD 3

d2(
i 51

4

@jc
22~ i !1jb

22~ i !#, ~46!

M2(mm)
202 /d55

5p

3072
J0S ,

dD 3

d2(
i 51

4

@jc
22~ i !2jb

22~ i !#. ~47!

Using Eqs. ~44! and ~45! one can estimate the relatio
M0(mm)

202 /J0(mm)
202 for different valuessb /d, sc /d, and kd,

since the minimal distance between identical chiral m
ecules essentially depends only on these parameters a
almost independent on the parameterw. Substituting the re-
lation M0(mm)

202 /J0(mm)
202 into the system of equations~1!, one

obtains the temperature variation of the primary order
rameterSm and the ratio of the order parametersDm /Sm
which are presented respectively in Figs. 6~a!, 6~b! for the
casessb /sc51,1.4, and 2. One can see that the relat
Dm /Sm is essentially nonzero in the casesbÞsc and grows
with the increasing temperature.

The situation becomes more complicated when the in
acting molecules are dissimilar. One can see from Eq.~31!
that the minimal side-by-side distance between two ident
molecules is independent on the molecular length,. Indeed,
when the molecules are identical, the loops of the first o
penetrate deep into the alcoves of the second one, and
molecules may contact irrespective of the position of
molecular ‘‘ends.’’ At the same time, dissimilar molecules
not dock very well, and the minimal distance between th
may depend on the length of each molecule. Then the

FIG. 5. Interaction coupling constants as functions of the m
lecular parameterw: ~1!–~3! J1(mm)

212 ; ~4!–~6! M1(mm)
212 ; ~1!,~4! sb

5sc50.3d; ~2!,~5! sb50.35d, sc50.25d; ~3!,~6! sb50.4d, sc

50.2d.
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lowing problem arises with the determination of the princip
short directions of the interacting molecules. One notes
the principal directionsa, b, andc of the same molecule ma
be chosen in different ways depending on the molecular p
The correct choice of the molecular axes should give
correct extrema of the effective potential which are main
determined by the minimal distance between interacting m
ecules. Restricting imagination with the molecular mod
presented in Fig. 3, one can unambiguously define the m
directiona for each molecule. Nevertheless, the short dir
tions b and c still depend on the molecular pair. One ca
ignore this dependence if both molecules are intensiv
twisted @km,m@2p, m51,2, see Fig. 3~a!#, because in this
case the biaxiality of both molecules is mainly determined
inequality of their helical semiaxes (sb

mÞsc
m , m51,2). In

the opposite case, when both interacting molecules
weakly twisted (km,m&2p, m51,2), the direction of the
short axes strongly depends on different parameters of b
molecules, such as molecular length,m .

Let us consider the practically important case of the
nary mixture (t52), where the first component is a weak
twisted cholesteric@see Fig. 3~b!# having length,c , diameter
of the tubedc , equal semiaxessb5sc[s, and helicityk
satisfying the following constraint:

-

FIG. 6. Primary order parameterSm ~a! and relation of the order
parametersDm /Sm ~b! as functions of the temperature:~1! sb5sc

50.3d; ~2! sb50.35d, sc50.25d; ~3! sb50.4d, sc50.2d.
4-8
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ANALYTICAL DESCRIPTION FOR THE CHIRAL . . . PHYSICAL REVIEW E 67, 031704 ~2003!
p/,c,k,2p/,c ~48!

and the second component is an achiral nematic@see Fig.
3~c!#, having length,n , diameter of the tubedn, and zero
semiaxessb5sc50 . One notes that in the casesb5sc, the
w parameter@see Eq.~26!# does not characterize the molec
lar shape and describes only the turn of the whole molec
around its principal axisa. Therefore, it happens to be th
only parameter that determines the direction of the short a
b and c of a chiral molecule. Whether a chiral molecu
satisfying Eq.~48! couples with a similar chiral molecule o
with an achiral one, the correct choice of its short axes c
responds to the valuew5p/2. Then the minimal side-by
side distance between a chiral molecule and an achiral on
achieved when the axisc of a chiral molecule is collinear to
the rnc vector connecting molecular centers. This situat
corresponds to Fig. 1~c!. Performing calculations presente
in Appendix C, one obtains the following expressions for t
minimal distance and its first derivative with respect to t
rotational angleg in the caseg50:

jmin5Ad22s2sin2S k,

2 D1sUcosS k,

2 D U, ~49!

jmin8 5s
,

2 UsinS k,

2 D UYAd22s2sin2S k,

2 D , ~50!

where the parameter, is the minimal length (,c or ,n) and
d[(dc1dn)/2 is the average diameter. Performing calcu
tions presented in Appendix D and taking into account E
~24!, one obtains in supposition~27! the following expres-
sions for the chiral coefficientsJ1(nc)

212 and M1(nc)
212 , which

describe the chiral coupling of chiral and achiral molecu
having the same length (,c5,n5,):

J1(nc)
212 /d452

1

4
qkBTjmin8 jmin

3 /d4

2
105p

1024
J0S s

d D 2

~kd!21
,

d F S d

jmin
D 4

2S d

d1s D 4Gcos~k, !, ~51!

M1(nc)
212 /d452

1

8
qkBTjmin8 jmin

3 /d4

2
105p

2048
J0S s

d D 2

~kd!21
,

d F S d

jmin
D 4

13S d

d1s D 4Gcos~k, !, ~52!

where first terms describe the steric part of the chiral in
action and the second terms describe the dispersion part.
can see that Eqs.~51! and ~52! describing chiral interaction
of chiral and achiral molecules are analogous to the co
sponding expressions~34! and ~35! for two identical chiral
molecules. Nevertheless, the sign of the steric part in E
03170
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~51! and~52! is opposite to the sign of the steric part in Eq
~34! and ~35!. Indeed, the first derivative of the minima
side-by-side distance between chiral and achiral molec
with respect to the rotational angleg is positive @see Eq.
~50!#, whereas the first derivative of the minimal side-by-si
distance between two identical chiral molecules with resp
to the same angle is negative@see Eq.~32!#. Thus, for ex-
ample, two identical right-handed molecules@Fig. 7~a!# pen-
etrate deeper into each other having a right-handed turn
tween their long axes, whereas an achiral molec
penetrates deeper into the same chiral molecule@Fig. 7~b!#
having a left-handed turn. This geometrical fact may lead
the helical sense inversion, which is discussed in the follo
ing section.

Taking into account Eq.~25! and using calculations pre
sented in Appendix D, one obtains in supposition~27! the
following expressions for the achiral coefficientsJ0(nc)

202 ,
M0(nc)

202 , J2(nc)
202 , andM2(nc)

202 in the case,n5,c :

J0(nc)
202 /d35

5p

1536
J0S ,

dD 3F S d

jmin
D 4

13S d

d1s D 4G , ~53!

M0(nc)
202 /d35

5p

3072
J0S ,

dD 3F S d

jmin
D 4

2S d

d1s D 4G , ~54!

J2(nc)
202 /d55

5p

768
J0S ,

dD 3F S d

jmin
D 2

13S d

d1s D 2G , ~55!

M2(nc)
202 /d55

5p

1536
J0S ,

dD 3F S d

jmin
D 2

2S d

d1s D 2G , ~56!

which are analogous to the corresponding expressions~44!–
~47! for two identical chiral molecules.

FIG. 7. Two identical right-handed molecules~a! penetrate
deeper into each other having right-handed turn between their
axes, whereas an achiral molecule penetrates deeper into the
chiral molecule~b! having left-handed turn.
4-9
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IV. HELICAL TWISTING POWER AND HELICAL SENSE
INVERSIONS

A. Helical sense inversion with temperature variation

For simplicity, let us consider the case of pure on
component cholesteric (t51). One can distinguish at leas
two reasons for the helical sense inversion with the temp
ture variation. The first reason is the competition between
dispersion interaction and the steric effects. For simplic
let us first consider the system of similar quasiuniaxial m
ecules (sb5sc). As it was already noticed in Sec. III, th
correct choice of the molecular short directions in the c
sb5sc corresponds to the parameterw5p/2. The coeffi-
cientsM0

202 and M2
202 @see Eqs.~45! and ~47!# are equal to

zero @38#, and Eqs.~34!, ~35! for the chiral coefficientsJ1
212

and M1
212 do not contain the terms with the index ‘‘2. ’’

SubstitutingM0
20250 into Eq. ~3! and solving Eq.~1!, one

obtains for the biaxial order parameterD[0. Therefore the
coefficientM1

212 @see Eq.~5!# does not influence the pseud
scalar k2. Substituting Eq.~34! for the resting coefficient
J1

212 into Eq. ~5! for the pseudoscalark2 and Eq.~46! for the
coefficientJ2

202 into Eq. ~6! for the twist elastic constantK2,
one obtains from Eq.~4! the following expression for the
helical wave numberq in the case of quasiuniaxial molecule
(sb5sc):

q5qster1qdisp , ~57!

whereqster andqdisp are the steric and dispersion contrib
tions to the helical wave number, respectively,

qster[2
64

5p

qkBT

J0
S d

, D 3j8~1!j3~1!1j8~2!j3~2!

d7$j22~1!1j22~2!%
,

~58!

qdisp[q0@12D sin~k,1x!#, ~59!

where

q0[2
2

5p S s

, D 2

~kd!3
S4,1

5 ~1,2!

d3$j22~1!1j22~2!%
, ~60!

D[
A$C4,0

5 ~1,2!%21$S4,0
5 ~1,2!%2

S4,1
5 ~1,2!

. ~61!

The parametersx, Cm,n
k (1,2), andSm,n

k (1,2) are determined
respectively by the following expressions:

x[arctan
C4,0

5 ~1,2!

S4,0
5 ~1,2!

, ~62!

Cm,n
k ~1,2![Cm,n

k
„kj~1!…2Cm,n

k
„kj~2!…,

Sm,n
k ~1,2![Sm,n

k
„kj~1!…2Sm,n

k
„kj~2!…, ~63!

and where the functionsS4,1
5 (x), C4,0

5 (x), and S4,0
5 (x) are

determined by Eqs.~39!, ~40!, and ~41! respectively. The
03170
-

a-
e
,
-

e

minimal distancej( i )[j(k,s,w i
2) between two identical

quasiuniaxial molecules in the parallel side-by-side orien
tion number i ~see Table I! and its derivative j8( i )
[j8(k,s,w i

2) with respect to the angleg between the long
molecular axes are determined by Eqs.~31! and~32!, respec-
tively, wheresb5sc[s. Substitutingw5p/2 into Table I,
one obtains the only two independent odd orientations
two identical quasiuniaxial molecules:w1

250 and w2
2

5p/2. The steric contributionqster derives from the packing
entropy. The constantqkB /J0 in Eq. ~58! may be approxi-
mated in the Parsons approach@32,33# by the following ex-
pression:

qkB

J0
'0.005 74

u ln~12F!u
TNI

S ,

dD 2

@j24~1!1j24~2!#,

~64!

which follows from Eq.~44!, where the constantJ0
202 is ap-

proximately equal to 4.54kBTNI /r according to the standar
Maier-Saupe theory @35#, and where the densityr
'4F/(d2,) is determined by the volume fractionF and
molecular dimensions, andd.

One notes from Eq.~58! that the steric contributionqster
to the helical wave number is positive~sincej8 is negative!.
Thus, the steric effects lead to the same handedness o
liquid crystal as its molecules. At the same time, the disp
sion termqdisp @see Eq.~59!# oscillates with the increasing
molecular length, about the negative valueq0. The relative
amplitude of these oscillationsD depends on the molecula
chirality, which is determined by parametersk ands. From
Eqs. ~39!–~41! for the functions S4,1

5 (x), C4,0
5 (x), and

S4,0
5 (x), it follows that the valueq0 is finite for k50,

whereas the relative amplitude of oscillationsD diverges for
k50. Strictly speaking, Eq.~59! for the dispersion contribu-
tion to the helical wave numberqdisp is incorrect fork50,
since we used the assumption~27!. Nevertheless, one can se
from Eq. ~61! the tendency of the amplitudeD to arise for
small k. This tendency is obliged to the dominant effect
the molecular ends on the dispersion interaction of
weakly twisted molecules (k,;2p). In this case, the rela
tive amplitude of oscillationsD essentially exceeds unity. O
the contrary, for intensively twisted molecules (kd;2p) the
effect of the molecular ends is comparable to the effect of
total molecular chirality, and the amplitudeD has an order of
unity. This situation is demonstrated in Fig. 8, where t
dispersion contribution to the helical wave numberqdisp is
presented as a function of the parameterkd in the case,/d
55 ands/d50.1,0.2. One can separate two limit regimes
Fig. 8. The first one~left side of Fig. 8! realizes for weakly
twisted molecules. In this case the oscillations of the disp
sion term are much larger than the average value, and
dispersion contribution to the helical wave numberqdisp may
be positive or negative, depending on valuesk and ,. The
second regime~right side of Fig. 8! realizes for intensively
twisted molecules. In this case the oscillations are of
same order as the average value, and the dispersion term
the dominant negative sign with small positive ‘‘islands
These two regimes will be considered separately in Se
4-10
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IV B and IV C. Here we stress that the dispersion contrib
tion to the helical wave numberqdisp may be negative irre-
spective of the regime. Thus, the steric and dispersion c
tributions may have opposite signs. Since the ste
contributionqster is proportional to temperatureT, and the
dispersion contributionqdisp is independent on temperatu
T, the helical sense inversion with the temperature varia
happens, when the dispersion and the steric contribut
equal each other. The corresponding temperature depend
of the helical wave numberq is presented in Fig. 9 forF
50.6, J0 /kB51000 K, ,/d55, s/d50.3, and four differ-
ent values of the parameterkd. One obtains the following
relation from Eqs.~57!–~59!:

T

Tinv
5

qster

qdisp
, ~65!

whereTinv is the temperature of the helical sense invers
in the system of identical quasiuniaxial molecules. Knowi
the temperature of the helical sense inversionTinv and using

FIG. 8. Dispersion contribution to the helical wave numberqdisp

as a function of the molecular parameterkd in the case,/d55,
sb5sc[s: ~1! s/d50.1; ~2! s/d50.2. The behavior is differen
for small and large values ofkd.

FIG. 9. Helical wave numberq as a function of the temperatur
in the caseF50.6, J0 /kB51000 K, ,/d55, sb /d5sc /d50.3
and ~1! kd52.3; ~2! kd52.34; ~3! kd52.36; ~4! kd52.4.
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Eqs.~58!, ~59!, and~65! one can estimate the energetic co
stantJ0 for the investigated molecules. Substituting the co
stantJ0 into Eq. ~64!, one can estimate the temperature
the nematic-isotropic phase transitionTNI . Similarly, know-
ing the temperature of the nematic-isotropic phase transi
TNI one can estimate the temperature of the helical se
inversionTinv ~in the caseTNI.Tinv).

In the case of biaxial molecules (sbÞsc), the other pos-
sibility exists for the helical sense inversion. Indeed, as
follows from Fig. 5, the coefficientJ1

212 describing chiral
interaction between the long molecular axes, and the co
cient M1

212 describing chiral interaction between the lon
axis of the first molecule and the short axes of the sec
molecule, may have opposite signs. Since the relation of
order parametersD/S is usually small, but grows with the
increasing temperature@see Fig. 6~b!#, the helical sense in-
version with the temperature variation is possible@see Eqs.
~4! and~5!#, when the coefficientsJ1

212 andM1
212 have oppo-

site signs, and the absolute value of the coefficientJ1
212 is

essentially smaller than the absolute value of the coeffic
M1

212. Therefore, a good possibility of the helical sense
version occurs when the parameterssb andsc of the chiral
molecule are essentially inequal~see curves 3 and 6 in Fig
5!. The corresponding temperature dependence of the he
wave numberq, calculated using Eqs.~4!–~6!, is presented
in Fig. 10 for F50.6, J0 /kB51300 K, ,/d55, sb /d
50.4, sc /d50.2, kd55, and four different values of pa
rameterw. Instead of Eq.~65!, one obtains the following
constraint for the helical sense inversion in the case of b
ial molecules:

J1
212~Tinv!52D/S~Tinv!M1

212~Tinv!, ~66!

where the coefficientsJ1
212 and M1

212 are linear functions of
temperatureT @see Eqs.~34! and ~35!#, and the function
D/S(T) is determined by the recurrent Eq.~1!. One notes
from Fig. 10 that the temperature dependence of the he
wave numberq always has the increasing branch. As in t

FIG. 10. Helical wave numberq as a function of the temperatur
in the caseF50.6, J0 /kB51300 K, ,/d55, sb /d50.4, sc /d
50.2, kd55 and ~1! w50.33; ~2! w50.39; ~3! w50.41; ~4! w
51.18.
4-11
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A. V. EMELYANENKO PHYSICAL REVIEW E 67, 031704 ~2003!
case of quasiuniaxial molecules, it corresponds to the gr
ing positive steric contribution to the coefficientJ1

212. If the
dispersion contribution to the coefficientJ1

212 ~which is inde-
pendent on temperature T! is negative, the helical sense in
version from negative to positive sign may happen~curves 2,
3!. At the same time, dependenceq(T) may also have the
decreasing high-temperature branch, if the coefficientM1

212

is negative ~curves 1–3!. Indeed, the growing relation
D/S(T) may overbear the steric contribution to coefficie
J1

212. Then the helical sense inversion from positive to ne
tive sign may happen~curves 2, 3!. If the absolute value of
the coefficientM1

212 is essentially larger than the absolu
value of the coefficientJ1

212, the whole curveq(T) appears
to be below zero~curve 1!. If the coefficientM1

212 is positive,
the dependenceq(T) has the only increasing branch~curve
4!, and the helical sense inversion from positive to nega
sign is impossible. Finally, one notes that one or both hy
thetical points of inversion may appear beyond the range
the nematic phase.

B. Helical sense inversion with variation of molecular length

Many biologically important polymers, such as polype
tides, are known to suffer the spiral-coil transition that
usually called the process of denaturation@18#. The native
molecule of polypeptide is usually a long (,/d;100) rod-
like and highly intensive helix (kd;2p). For simplicity let
us consider the case of pure one-component polypeptidt
51) consisting of quasiuniaxial molecules (sb5sc). Ac-
cording to Eqs.~58!–~61!, the dispersion contribution to th
helical wave number, which is proportional to (d/,)2, domi-
nates for long molecules over the steric contribution which
proportional to (d/,)3. On the other hand, molecules wit
highly intensive helix obey the regime that is presented
the right side of Fig. 8, when the dispersion contribution
the helical wave number is negative almost for any mole
lar length~excluding the small ‘‘islands’’!. In the process of
denaturation, molecules of polypeptides are known to s
into small (,/d,5) spiral pieces, which are interrupted b
coiled ~achiral and flexible! fragments. When the spira
pieces become small enough, the steric contribution to
helical wave number may dominate. Since the steric con
bution is positive, helical sense inversion may occur.

To obtain the constraint for helical sense inversion dur
denaturation, let us estimate the average axial ratio,/d of
spiral pieces. Let the free energy of the system depend
three internal parameters: the density of the spiral piecer
~with the respect to the total density of the spiral and coi
pieces!, the average elongation of the spiral pieces,/d, and
the orientational distribution function of the spiral piec
f (cosu). The equilibrium values of all the internal param
eters can by obtained by independent minimization of
free energyF with respect to these parameters. A schema
illustration of the hypothetical free energyF as a function of
the average axial ratio,/d is presented in Fig. 11. For an
set of external parameters, it has the global minimum co
sponding to the equilibrium value,/d. The spiral pieces spli
into smaller ones or combine into bigger ones with the va
tion of the external parameters. Suppose that, in additio
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the global minimum, the free energy of the system has a
of the local minima with respect to the axial ratio,/d. Then
the process of denaturation~or renaturation! may be inter-
preted as a sequence of phase transitions, when the fre
ergy of the system changes by little steps correspondin
the discrete change in the average axial ratio,/d. Let us
expand the hypothetical free energyF(,,d,k,s) in Taylor
series with respect to the small parameters/d and collect the
terms with the same power of the small parameterd/,:

F~,,d,k,s!5(
a

(
g

Fag~k,,kd!~s/d!a~d/, !g. ~67!

Let the first few coefficientsFag(k,,kd) in the sum~67! be
independent of the parameter (k,) till the coefficient
Fmn(k,,kd), which is a finite periodical function of the pa
rameter (k,). Then in the suppositions/d!1, d/,!1 one
obtains the following approximate constraint for the glob
minimum of the functionF(,,d,k,s) with respect to the
axial ratio of a spiral piece,/d @for the constant parameter
(kd) ands/d]:

(
a50

m

~s/d!a (
g5g0

n

gFag~d/, !g1150. ~68!

Likewise, one obtains the following constraint for the loc
minima in the vicinity of the global one:

]

]~k, !
Fmn~k, !50. ~69!

In addition to the standard internal energyFint and orienta-
tional entropyFor , the free energy of the systemF contains
also the energy of the hydrogen bondsFH @18# that stabilize
the molecular spiral and various forcing fieldsFext provided
by the external actions~temperature, chemical, etc.! which,
on the contrary, denature the hydrogen bonds:

F[Fint1For1FH1Fext . ~70!

FIG. 11. Schematic illustration of the free energyF as a function
of the average axial ratio,/d of spiral pieces.
4-12
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It is clear that the energy of the hydrogen bondsFH and
external actionFext do not depend explicitly on the param
eters/d. Indeed, they are simply proportional to the numb
of screws in a spiral piece (;,/d) and the number of spira
pieces (;r):

FH1Fext;r,/d. ~71!

The orientational entropyFor is also independent explicitly
of the parameters/d, since it does not contain any molec
lar parameters. Then the only term in the free energyF de-
pending explicitly on the parameters/d is the internal en-
ergy Fint :

Fint[2 1
2 r2J0

202~,,d,k,s!S2. ~72!

Expanding the moment of the coupling consta
J0

202(,,d,k,s) in the Taylor series with respect to the sm
parameters/d and collecting the terms with the same pow
of the small parameterd/,, as is presented in Appendix B
one obtains the following expression for the largest oscil
ing term in the sum~67!:

Fosc~,,d,k,s!'F2,22~k,,kd!~s/d!2~,/d!2, ~73!

where

F2,22;2~kd!3$C2,0
5 ~1,2!sin~k, !2S2,0

5 ~1,2!cos~k, !%,
~74!

where parametersC2,0
5 (1,2) andS2,0

5 (1,2) are determined by
Eqs. ~63!. Here we present the explicit expressions for t
functionsC2,0

5 (x) andS2,0
5 (x) which are calculated in Appen

dix E:

C2,0
5 ~x![768E

0

`

dtE
x

`

dr
r 2cost

@r 21t2#5

5S 1

60
x212

1

60
x221

5

6
x231

11

2
x24

114x25114x26D5p

4
exp~2x!1

p

48
Ei~2x!,

~75!

S2,0
5 ~x![768E

0

`

dtE
x

`

dr
r 2sint

@r 21t2#5

5S 2
1

60
x221

11

2
x24114x26D5

4
E2~x!

1S 1

60
x211

5

6
x23114x25D5

4
E1~x!1

1

24
x21

1
1

36
x232

79

5
x252

1

24
Q~x!, ~76!
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where functionsE7(x) and Q(x) are determined by Eqs
~42! and ~43!, respectively. Differentiating Eq.~74! with re-
spect to parameter (k,), one obtains from Eq.~69! the fol-
lowing constraint for the local minima of the free energyF in
the vicinity of the global one:

k,n5p2c~k,s!12pn, n50,1,2, . . . . ~77!

Here functionc(k,s) is determined by the following expres
sion:

c~k,s![arctan
C2,0

5 ~1,2!

S2,0
5 ~1,2!

. ~78!

The functionc(k,s) is equal top/2 in the casek50, mono-
tonically decreases with the increasing parameterk and tends
to zero with the parameterk tending to infinity. In the case o
intensively twisted molecules (kd;2p) the function
c(k,s) in Eq. ~77! may be neglected, and the average len
of the spiral pieces, satisfies the constraintk,5p12pn.
This result may also be obtained from the common sen
Indeed, the molecules, consisting of the integer numbe
loops, have in the nearest orientation$a,b,c% ~see Table I!
the maximal number of contacts per unity of their leng
Substituting Eq.~77! into Eq.~59!, one obtains the following
expression for the dispersion contribution to the helical wa
number:

qdisp5q0F12
C2,0

5 ~1,2!S4,0
5 ~1,2!2C4,0

5 ~1,2!S2,0
5 ~1,2!

S4,1
5 ~1,2!A$S2,0

5 ~1,2!%21$C2,0
5 ~1,2!%2 G ,

~79!

which is negative for the intensively twisted molecule
Thus, the steric and dispersion contributions to the hel
wave number have opposite signs. Helical sense inver
may be observed in the process of denaturation, since
dispersion contribution dominates for the long spiral piec
and the steric contribution dominates for the short ones. S
stituting Eqs.~58! and ~79! into Eq. ~57!, one obtains the

FIG. 12. Helical wave numberq as a function of the averag
axial ratio,/d of spiral pieces in the caseq51, J0 /kB56000 K,
T5300 K, s/d50.3 and~1! kd53.75; ~2! kd54; ~3! kd54.25;
~4! kd55.5. During denaturation it changes by steps denoted
square bars.
4-13
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A. V. EMELYANENKO PHYSICAL REVIEW E 67, 031704 ~2003!
total helical wave numberq, which is presented in Fig. 12 a
a function of the axial ratio,/d in the caseq51 @39#,
J0 /kB56000 K, T5300 K, s/d50.3 and four different val-
ues of the parameterkd. The points corresponding to th
constraint~77! are presented in Fig. 12 by the square ba
One should, however, stress, that the constraint~77! was ob-
tained in the supposition that the molecule may be bro
into pieces in an arbitrary place. The real places of the
may only correspond to the positions of the hydrogen bo
which repeat 3.6 times a loop as the average@18#. Thus, the
real places of the tear lie in the vicinityD,n'60.14/k of the
places denoted by Eq.~77!. Since functionsCm,n

k (x) and
Sm,n

k (x) rapidly decrease with the increasing variablex @see
Eqs. ~39!–~41! and ~75! and ~76!#, the dispersion contribu
tion to the helical wave numberqdisp also decreases with th
increasing parameterkd @see Eqs.~79! and~60!#. Therefore,
the point of helical sense inversion moves in Fig. 12 towa
the larger axial ratio,/d with the increasing parameterkd
~see curves 1–3!. Beginning with some critical valuekd, the
dispersion contribution to the helical wave numberqdisp
does not overbear the steric contributionqster for any ratio
,/d, and helical sense inversion is not observed during
naturation of such molecules~see curve 4 in Fig. 12!. The
decrease of the absolute value of the helical wave numbq
with the molecular elongation,/d has a simple explanation
Indeed, chirality of the nematic phase arises from chirality
the effective intermolecular potential. It is clear that the lo
molecular ‘‘ends’’ attract each other. This makes the chol
teric distortion less preferable.

C. Helical sense inversion in nematic-cholesteric mixtures with
variation of mutual concentration of components

Let us consider the case of the binary mixture (t52),
where the first component is a weakly twisted choleste
@see Fig. 3~b!# having equal semiaxes (sb5sc[s) and sat-
isfying the constraint~48!, and the second component is a
achiral nematic@see Fig. 3~c!#. As it was discussed in Sec
III, the steric contribution to the chiral interaction of a chir
molecule with an achiral one, and the steric contribution
the chiral interaction of two identical chiral molecules ha
opposite signs~see Fig. 7!. On the other hand, choosing
special set of molecular parameters, one can minimize
influence of the dispersion interaction on the helical wa
number. Indeed, weakly twisted molecules constituting
pure one-component cholesteric obey the regime in the
side of Fig. 8, when the dispersion contribution may ha
different signs depending on the choice of molecular para
eters. Choosing the intermediate parameters, one ob
zero dispersion contribution to the helical wave number. T
same situation may be achieved in the case of bin
nematic-cholesteric mixture. Then only the steric effects m
be responsible for helical sense inversion with the variat
of the mutual concentration of components. Substituting E
~44! and ~45! for the coefficientsJ0(mm)

202 and M0(mm)
202 (m

5n,c)—describing the achiral interaction of identical mo
ecules~an achiral molecule with an achiral one or a chi
molecule with a chiral one!—and Eqs.~53! and ~54! for the
coefficientsJ0(nc)

202 and M0(nc)
202 —describing the achiral inter
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action of an achiral molecule with a chiral one—into Eq.~3!
for the mean-field energyUMF

m , one obtains from the recur
rent Eqs.~1! the values of the order parametersSm andDm .
Next, substituting Eqs.~34! and ~35! for the coefficients
J1(cc)

212 andM1(cc)
212 —describing the chiral interaction of iden

tical chiral molecules—and Eqs.~51! and ~52! for the coef-
ficients J1(nc)

212 and M1(nc)
212 —describing the chiral interaction

of an achiral molecule with a chiral one—into Eq.~5!, one
obtains the value of the pseudoscalark2. Finally, substituting
Eqs. ~46! and ~47! for the coefficientsJ2(mm)

202 and M2(mm)
202

(m5n,c) and Eqs.~55! and ~56! for the coefficientsJ2(nc)
202

and M2(nc)
202 into Eq. ~6!, one obtains the value of the twis

elastic constantK2. The helical wave numberq of the binary
nematic-cholesteric mixture, calculated using Eq.~4!, is pre-
sented in Fig. 13 as a function of the mutual concentration
the components in the caseF50.6, J0 /kB5800 K, T
5TNI25K, ,c /dc55, s/dc50.3, anddn /dc51.2. Differ-
ent curves in Fig. 13 correspond to different values of
parameterk,c , describing helicity of chiral molecules
Changing the value of the parameterk,c , one obtains nega
tive or positive shift of the previous dependence, either
chiral part of the dispersion interaction is negative or po
tive. Variations of the helical wave number with the conce
tration of components in the common casesbÞsc are rather
complicated. Nevertheless, the helical sense inversions
still possible due to the steric effects.

V. CONCLUSION

In this paper we presented a simple description for
correlation between molecules constituting a chiral nem
~cholesteric! phase. We suggested a model of chiral molec
that involves only five parameters having transparent g
metrical meaning: the axial ratio,/d, the intensity of the
helix kd, semiaxes of the helixsb /d, sc /d and the param-
eter w that determines the turn of the molecular cen
around the long axisa with respect to the short axisb. In the

FIG. 13. Helical wave numberq as a function of the concentra
tion of the chiral component in the mixture of chiral and achi
molecules in the caseF50.6, J0 /kB5800 K, T5TNI25 K,
,c /dc55, s/dc50.3, dn /dc51.2 andk,c55.1 ~1!; 5.3 ~2!; 5.5
~3!; 5.7 ~4!; 5.9 ~5!.
4-14
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ANALYTICAL DESCRIPTION FOR THE CHIRAL . . . PHYSICAL REVIEW E 67, 031704 ~2003!
case of quasiuniaxial molecule~whensb5sc[s) we have
only three independent parameters of the molecule:,/d, kd,
ands/d. In addition to these geometrical parameters, we
only the following variable values: the volume fraction of th
molecules F, temperatureT, and ~in the case of the
t-component mixture! the relative concentration of its com
ponentshm (m51, . . . ,t21).

We obtained the analytical expression for the helical wa
numberq in terms of these parameters. As it was predicted
Refs.@7–11#, this expression appeared to consist of two co
tributions @in the case of the pure quasiuniaxial choleste
see Eq.~57!#, which derive from the steric repulsion and th
dispersion attraction.

The steric contribution to the helical wave numberqster

@see Eq.~58!# is mostly managed by the minimal distancej12

between molecules. If both interacting molecules w
achiral, the minimal distance between them would cor
spond to the parallel side-by-side orientation. At the sa
time, if at least one of the molecules is chiral, the minim
distance between them is achieved when the angleg between
their long axes is equal to a nonzero value. To analyze wh
turn ~left or right! corresponds to the decreasing minim
distancej12, we calculated its derivativej128 with respect to
the angleg in the parallel side-by-side orientation@see Eqs.
~32! and~50!#. It was established that, for example, two ide
tical right-handed molecules dock better in the right-hand
orientation@see Fig. 7~a!#, whereas a right-handed molecu
and an achiral one dock better in the left-handed orienta
@see Fig. 7~b!#. We demonstrate in Sec. IV C that the diffe
ence between steric packing of identical and dissimilar m
ecules may be responsible for helical sense inversion
nematic-cholesteric mixtures with the change in the mut
concentration of the components~see Fig. 13!. This result is
confirmed by numerous experimental data@14–17#.

The dispersion contribution to the helical wave numb
qdisp @see Eqs.~59!–~61!# is provided by the attractive force
between molecules. The dispersion attraction of the
achiral moleculesU12 is known to be maximal in the paralle
side-by-side orientation. At the same time, if at least one
the molecules is chiral, the maximal dispersion attract
may correspond to the small deviation from the parallel si
by-side orientation. This deviation may be opposite to
turn providing the minimal distance between molecules.
demonstrated that competition between the dispersion fo
and the steric effects may lead to helical sense inversion
the change of the temperature. Indeed, according to Eq.~58!
the steric contribution to the helical wave numberqster is
proportional to temperatureT, whereas the dispersion contr
butionqdisp is independent on temperatureT @see Eqs~59!–
~61!#. If these contributions have opposite signs, heli
sense inversion may happen at some temperature~see Figs. 9
and 10!.

The other possibility for helical sense inversion exists
the molecules are essentially biaxial. According to the st
dard scheme@see Eq.~1!#, the relationD/S between the bi-
axial and primary order parameters increases with the
creasing temperatureT @see Fig. 6~b!#. If the optimal packing
of the short molecular axes corresponds to the rotation of
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nematic phase that is opposite to the rotation providing
optimal packing of the primary molecular axes, the oth
helical sense inversion may happen at some temperature~see
Fig. 10!.

Helical sense inversions with the variation of temperat
were observed experimentally by different authors@2–6#.
Using our analytical scheme presented in Sec. IV A, one c
in particular, estimate whether the molecules of the inve
gated liquid crystal are biaxial or uniaxial. Indeed, if th
dependenceq(T) is linear ~see Fig. 9!, the molecules are
uniaxial according to our scheme. Otherwise~see Fig. 10!
the molecules possess essential shape biaxiality.

One notes from Eqs.~58! and ~59!–~61! that the steric
contribution to the helical wave numberqster is inversely
proportional to the third power of the molecular axial rat
,/d, whereas the dispersion contributionqdisp is inversely
proportional to the second power of this ratio. Thus, t
steric contribution may dominate for the short molecul
whereas the dispersion contribution may dominate for
long ones. Taking this into account, one may suppose he
sense inversion in the process of denaturation of so
polypeptides, if the steric and dispersion contributions ha
opposite signs. Indeed, the long native molecules are kn
to split into small chiral pieces in the process of denaturat
@18#. In Sec. IV B we suggested a simple analytical sche
of denaturation, which resulted in the diagram presented
Fig. 12.

Finally, one should stress that very long molecules (,/d
@1), such as tobacco mosaic virus@36#, usually constitute
the achiral nematic phase because the long ‘‘ends’’ of o
molecule attract the ‘‘ends’’ of the other one and the para
side-by-side orientation of such molecules appears to be
most probable. This effect is confirmed by Fig. 12, where
absolute value of the helical wave numberq rapidly de-
creases with the increasing molecular length,/d.
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APPENDIX A: MINIMAL DISTANCE BETWEEN TWO
IDENTICAL CHIRAL MOLECULES

1. Minimal distance between two identical chiral molecules in
side-by-side orientation

Let us first consider the two identical chiral molecules
the side-by-side orientation presented in Fig. 1~c!. A sche-
matic illustration of the contacting identical molecules in t
casea1↑↑a2 , b1↑↑b2 , c1↑↑c2↑↑u12, w5p/2 is presented in
Fig. 14. In correspondence with the molecular model p
sented in Sec. III, the coordinates (x1 ,y1 ,z1) of an arbitrary
layer t1 of the first molecule and the coordinates (x2 ,y2 ,z2)
4-15
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of an arbitrary layert2 of the second molecule in this orien
tation are, respectively, equal to

S x1~g,t1!

y1~g,t1!

z1~g,t1!
D 5S sbcos~kt11w1!cos~g/2!2t1sin~g/2!

scsin~kt11w1!

sbcos~kt11w1!sin~g/2!1t1cos~g/2!
D ,

~A1!

S x2~g,t2!

y2~g,t2!

z2~g,t2!
D 5S sbcos~kt21w2!cos~g/2!1t2sin~g/2!

r 121scsin~kt21w2!

2sbcos~kt21w2!sin~g/2!1t2cos~g/2!
D ,

~A2!

where both parameterst1 andt2 range from2,/2 to ,/2 and
both parametersw1 andw2 may be equal tow, w1p, 2w or
2w1p depending on the choice of the odd orientation
molecules 1 and 2~see Fig. 4!. Penetration of a layert1 of
the first molecule into a layert2 of the second molecule i
forbidden. The minimal distance between layers is the dia
eter of the tubed. According to Eqs.~A1! and ~A2!, the
corresponding distance between the molecular cen
jc(g,t1 ,t2) satisfies the following constraint:

d25@jc~g,t2,t1!12scsin~kt21w2!cos~kt11w1!#2

1@2sbsin~kt21w2!sin~kt11w1!cos~g/2!

22t1sin~g/2!#21@2sbcos~kt21w2!cos~kt11w1!

3sin~g/2!22t2cos~g/2!#2, ~A3!

where t7[(t27t1)/2, w7[(w27w1)/2 . The total set of
the parametersw7 is presented in Table I. The minimal dis
tance between moleculesjc(g) corresponds to the maxima
value jc(g,t2,t1). Maximizing jc(g,t2,t1) in Eq. ~A3!
separately byt2 and t1 in the caseg50, one obtains

cos~kt11w1!571, ~A4!

ksccos~kt21w2!Ad22~2t2!2562t2, ~A5!

FIG. 14. Schematic illustration of the contacting identical chi
molecules in side-by-side orientation:a1↑↑a2 , b1↑↑b2 ,
c1↑↑c2↑↑u12, w5p/2.
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where the down sign corresponds to the case2p,w2

12pn,0 (n is integer!, the upper sign corresponds to th
case 0,w212pn,p, and in the casew25pn the sign in
Eqs.~A4! and ~A5! is determined by the parameterw1: the
down sign corresponds to the case2p/2<w112pn,p/2
and the upper sign corresponds to the casep/2<w112pn
,3p/2. The corresponding minimal distance between t
molecules and its first and second derivatives with respec
the angleg in the caseg50 are determined then by th
following expressions:

jc~0!5Ad22~2t2!212scusin~kt21w2!u, ~A6!

jc8~0!52ksbsccos2~kt21w2!, ~A7!

jc9~0!52@jc8
2~0!1~ t1!22~ t2!21sb

2cos2

3~kt21w2!#/Ad22~2t2!2, ~A8!

wheret2 is the root of Eq.~A5! @see Figs. 15~a! and 16~a!#,
and t1 is the minimum in the absolute value root of E

l

FIG. 15. Functionst2/d(w2) ~a! andjb,c /d(w2) ~b! in the case
s/d[sb /d5sc /d50.3 andkd51 ~1!, kd53 ~2!, kd55 ~3!.

FIG. 16. Functionst2/d(s/d) ~a! and jb,c /d(s/d) ~b! in the
casew250 andkd51 ~1!, kd53 ~2!, kd55 ~3!.
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~A4!. One notes that the functiont2 and consequently the
functionsjc andjc8 depend only on parameterw2, whereas

the functionjc9 depends on both parametersw2 andw1. One
notes that the same expressions~A4!–~A8! with the change
sb→sc , sc→sb and w→w1p/2 determine the minimum
distancejb and its derivativesjb8 , jb9 in the case presented i
Fig. 1~b!. The reduced functions jb,c /d(w2) and
jb,c /d(s/d) are presented in Figs. 15~b! and 16~b!, respec-
tively.
o

s
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2. Minimum distance between two identical chiral molecules
in end-to-end orientation

Next let us consider the two identical chiral molecules
the end-to-end orientation presented in Fig. 1~a!. A schematic
illustration of the contacting molecules in the ca
a1↑↑a2↑↑u12, b1↑↑b2 , c1↑↑c2 , w50 is presented in Fig.
17. The coordinates (x1 ,y1 ,z1) of an arbitrary layert1 of the
first molecule and the coordinates (x2 ,y2 ,z2) of an arbitrary
layer t2 of the second molecule in this orientation are, r
spectively, equal to
S x1~a,t1!

y1~a,t1!

z1~a,t1!
D 5S sbcos~kt11w1!cos~a/2!1scsin~kt11w1!sin~a/2!

2sbcos~kt11w1!sin~a/2!1scsin~kt11w1!cos~a/2!

t1

D , ~A9!

S x2~a,t2!

y2~a,t2!

z2~a,t2!
D 5S sbcos~kt21w2!cos~a/2!2scsin~kt21w2!sin~a/2!

sbcos~kt21w2!sin~a/2!1scsin~kt21w2!cos~a/2!

r 121t2

D , ~A10!
-

ol-
the
-

wo
n,
where both parameterst1 andt2 range from2,/2 to ,/2 and
both parametersw1 andw2 may be equal tow, w1p, 2w or
2w1p depending on the choice of the odd orientation
molecules 1 and 2~see Fig. 4!. Penetration of a layert1 of
the first molecule into a layert2 of the second molecule i
forbidden. The minimum distance between layers is the
ameter of the tubed. According to Eqs.~A9! and~A10!, the
corresponding distance between the molecular cen
ja(a,t1 ,t2) satisfies the following constraint:

d25@ja~a,t2,t1!12t2#21@2sbsin~kt21w2!

3sin~kt11w1!cos~a/2!12sccos~kt21w2!

3sin~kt11w1!sin~a/2!#21@2sbcos~kt21w2!

3cos~kt11w1!sin~a/2!12scsin~kt21w2!

3cos~kt11w1!cos~a/2!#2, ~A11!

where t7[(t27t1)/2, w7[(w27w1)/2 . The total set of
the parametersw7 is presented in Table I. It follows from

FIG. 17. Schematic illustration of the contacting identical chi
molecules in end-to-end orientation:a1↑↑a2↑↑u12, b1↑↑b2 ,
c1↑↑c2 , w50.
f

i-

rs

Eq. ~A11! that the functionja(a,t2,t1) increases with the
decreasing variablet2. On the other hand, the minimum
possible valuet252,/2. Thus, maximization of the func
tion ja(a,t2,t1) with the respect to the variablet2 gives

t252,/2. ~A12!

The following maximization of the functionja(a,t2,t1) in
Eq. ~A11! with respect to the variablet1 ~in supposition
sb>sc) gives

sin~kt11w1!50. ~A13!

The corresponding minimum distance between two m
ecules and its first and second derivatives with respect to
anglea in the casea50 are determined then by the follow
ing expressions:

ja~0!5,1Ad224sc
2sin2~k,/22w2!, ~A14!

ja8~0!52sbscsin~k,22w2!/@ja~0!2,#, ~A15!

ja9~0!5@2ja8
2~0!1 1

2 ~sb
22sc

2!1 1
2 ~sb

21sc
2!

3cos~k,22w2!#/@ja~0!2,#. ~A16!

APPENDIX B: DISPERSION INTERACTION OF TWO
IDENTICAL CHIRAL MOLECULES

1. Dispersion interaction of two identical chiral molecules in
side-by-side orientation

Let us first estimate the dispersion interaction of the t
identical chiral molecules in the side-by-side orientatio
presented in Fig. 1~c!. According to Eq.~28!, the dispersion

l
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A. V. EMELYANENKO PHYSICAL REVIEW E 67, 031704 ~2003!
interaction of an arbitrary layert1 of the first molecule with
an arbitrary layert2 of the second molecule in this orienta
tion is determined by the following expression:

DUc~r 12,t2,t1!52
J0d4

@~r 121Dyc!
21Dxc

21Dzc
2#3

,

~B1!

whereJ0 is the constant having the dimension of energy.
correspondence with Eqs.~A1! and ~A2!, the parameters
Dxc , Dyc, andDzc satisfy the following expressions:

Dxc522sbsin~kt21w2!sin~kt11w1!cos~g/2!

12t1sin~g/2!,

Dyc52scsin~kt21w2!cos~kt11w1!, ~B2!

Dzc522sbcos~kt21w2!cos~kt11w1!sin~g/2!

12t2cos~g/2!.

It follows from Eq. ~B2! that the parameterDyc is indepen-
dent on the angleg between the long molecular axes. O
obtains, therefore, the following expressions for the first a
second derivatives of the interaction between layers with
respect to the angleg:

DUc8~r 12,t2,t1!5
3J0d4@Dxc

21Dzc
2#8

@~r 121Dyc!
21Dxc

21Dzc
2#4

, ~B3!

DUc9~r 12,t2,t1!5$DUc9~r 12,t2,t1!%mon

1$DUc9~r 12,t2,t1!%osc, ~B4!

where the second derivativeDUc9(r 12,t2,t1) consists of the
two parts that we conditionally call ‘‘monotonic’’ and ‘‘os
cillating’’ parts,

$DUc9~r 12,t2,t1!%mon[
3J0d4@Dxc

21Dzc
2#9

@~r 121Dyc!
21Dxc

21Dzc
2#4

,

~B5!

$DUc9~r 12,t2,t1!%osc[2
12J0d4$@Dxc

21Dzc
2#8%2

@~r 121Dyc!
21Dxc

21Dzc
2#5

.

~B6!

It will be proved below that the term$DUc9(r 12,t2,t1)%mon

contains the largest monotonic function of the molecu
elongation,/d, whereas the term$DUc9(r 12,t2,t1)%osc con-
tains the largest oscillating function of the same parame
Substituting Eq.~B2! into Eqs.~B1!, ~B3!, ~B5!, ~B6!, then
expanding them in the small parameters/d[Asbsc/d and
taking into account the only first nonzero term~which at the
same time is not odd with respect to the changew→w1p
corresponding to the rotation of both molecules around th
long axesa1 anda2 by the anglep), one obtains the follow-
03170
d
e

r

r.

ir

ing expressions for the dispersion interaction of the lay
and its first and second derivatives with respect to the an
g in the caseg50:

DUc~r 12,t2,t1!'2
J0d4

@r 12
2 1~2t2!2#3

, ~B7!

DUc8~r 12,t2,t1!'96
sbsc

d2
J0d6

r 12W1~ t2,t1!

@r 12
2 1~2t2!2#5

, ~B8!

$DUc9~r 12,t2,t1!%mon'6J0d4
~ t1!22~ t2!2

@r 12
2 1~2t2!2#4

, ~B9!

$DUc9~r 12,t2,t1!%osc'248
sbsc

d2
J0d6

W2~ t2,t1!

@r 12
2 1~2t2!2#5

,

~B10!

where

W1~ t2,t1![t1sin2~kt21w2!sin~2kt112w1!

1t2cos2~kt11w1!sin~2kt212w2!,

~B11!

W2~ t2,t1![@~ t1!21~ t2!2#$11cos~2kt212w2!cos~2kt1

12w1!%2@~ t1!22~ t2!2#$cos~2kt212w2!

1cos~2kt112w1!%1t2t1sin~2kt2

12w2!sin~2kt112w1!. ~B12!

One notes from Eqs.~B7! and~B9! that the dispersion inter
actionDUc(r 12,t2,t1) of the layers and the monotonic pa
of its second derivative$DUc9(r 12,t2,t1)%mon with respect to
the angleg do not depend on the parameters/d at zeroth
approximation and have exactly the same expressions a
achiral molecules. The total dispersion interaction of the t
molecules is determined by Eq.~29!. In the case of the two
identical molecules one can rewrite Eq.~29! in the following
form:

U12~r 12!58E
0

,/2

dt2E
0

,/22t2

dt1^DU~r 12,t2,t1!&,

~B13!

where the angular brackets denote the even part of the
responding expression with respect to both parameterst1

and t2. Substituting Eqs.~B7! and~B9! into Eq. ~B13!, tak-
ing into account the constraint~27! and generalizing all the
expressions for both cases presented in Figs. 1~b!, 1~c!, one
obtains the following expressions for the total dispersion
teraction between two identical chiral molecules in the si
by-side orientation and the monotonic part of its second
rivative with respect to the corresponding rotational angleb
or g) in the caseb50 or g50:

Ub,c'2
3p

8
J0S d

r 12
D 5 ,

d
, ~B14!
4-18
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$Ub,c9 %mon'
5p

32
J0S d

r 12
D 7S ,

dD 3

. ~B15!

If the molecules satisfy constraint~27!, the first three terms
in integral ~25! may be neglected with the respect to t
fourth one. Indeed, according to Eqs.~A6!–~A8! and~B15!,
the fourth term in Eq.~25! contains the maximal~third!
power of the large parameter,/d and the minimal~zeroth!
power of the small parameters/d. Substituting Eq.~B15!
into the fourth term of Eq.~25! and taking into account Eqs
~7!, ~15!, and~30!, one obtains Eqs.~44!–~47! for the coef-
ficientsJ0(mm)

202 , M0(mm)
202 , J2(mm)

202 andM2(mm)
202 .

At the same time, the first nonzero terms in functio
DUc8(r 12,t2,t1) and $DUc9(r 12,t2,t1)%osc are proportional
to (s/d)2 @see Eqs.~B8! and~B10!#, as well as the function
jc8/d @see Eq.~A7!#. Thus, both terms in the integral~24!, as
well as the largest oscillating term in Eq.~25!, are propor-
tional to (s/d)2. Substituting Eqs.~B8! and ~B10! into Eq.
~B13!, one obtains functionsUc8(r 12) and $Uc9(r 12)%osc. De-
fining the parametersr[kr12, t[2kt2, and x[kjc , inte-
grating the functionsr 12

3 Uc8(r 12) andr 12
2 $Uc9(r 12)%osc with re-

spect to the variabler 12 and taking into account constrain
~27!, one obtains@40#

d24E
jc

`

r 12
3 Uc8~r 12!dr12

'
1

16
J0

sbsc

d2
~kd!3

,

d H S4,1
5 ~kjc!cos~2w2!

2FC4,0
5 ~kjc!

2
105

8
~kjc!

24cos~2w2!Gcos~2w1!cos~k, !

2S4,0
5 ~kjc!cos~2w1!sin~k, !J , ~B16!

d23E
jc

`

r 12
2 $Uc9~r 12!%oscdr12

'
1

32
J0

sbsc

d2
~kd!5S ,

dD 2

cos~2w1!$C2,0
5 ~kjc!sin~k, !

2S2,0
5 ~kjc!cos~k, !%, ~B17!

where functionsS4,1
5 (x), C4,0

5 (x), S4,0
5 (x) are determined by

Eqs.~39!, ~40!, and~41!, respectively, and functionsC2,0
5 (x)

and S2,0
5 (x) are determined by Eqs.~75! and ~76!, respec-

tively. Substitutingw1→w11p/2, one obtains the analo
gous expressions for the other side-by-side orientation
sented in Fig. 1~b!:
03170
s
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d24E
j

b

`

r 12
3 Ub8~r 12!dr12

'
1

16
J0

sbsc

d2
~kd!3

,

d H S4,1
5 ~kjb!cos~2w2!

1FC4,0
5 ~kjb!

2
105

8
~kjb!24cos~2w2!Gcos~2w1!cos~k, !

1S4,0
5 ~kjb!cos~2w1!sin~k, !J , ~B18!

d23E
j

b

`

r 12
2 $Ub9~r 12!%oscdr12

'2
1

32
J0

sbsc

d2
~kd!5S ,

dD 2

cos~2w1!

3$C2,0
5 ~kjb!sin~k, ! 2S2,0

5 ~kjb!cos~k, !%. ~B19!

Substituting Eqs.~B16! and ~B18! into Eq. ~24! and taking
into account Eqs.~7!, ~14!, and ~30!, one obtains Eqs.~34!
and~35! for the coefficientsJ1(mm)

212 andM1(mm)
212 . Substituting

Eqs. ~B17! and ~B19! into the fourth term of Eq.~25!, ne-
glecting the other terms in Eq.~25!, substituting Eqs.~15!
and~25! into Eq.~7! and, finally, substituting the first line o
Eq. ~7! into Eq. ~72!, one obtains Eq.~73! for the largest
oscillating term in the free energy.

2. Dispersion interaction of two identical chiral molecules in
end-to-end orientation

Next let us estimate the dispersion interaction of the t
identical chiral molecules in the end-to-end orientation, p
sented in Fig. 1~a!. Accordingly to Eq.~28!, the dispersion
interaction of an arbitrary layert1 of the first molecule with
an arbitrary layert2 of the second molecule in this orienta
tion is determined by the following expression:

DUa~r 12,t2,t1!52
J0d4

@~r 121Dza!
21Dxa

21Dya
2#3

,

~B20!

whereJ0 is the constant having the dimension of energy.
correspondence with Eqs.~A9! and ~A10!, the parameters
Dxa , Dya , Dza are determined by the following expression

Dxa522sbsin~kt21w2!sin~kt11w1!cos~a/2!

22sccos~kt21w2!sin~kt11w1!sin~a/2!,
4-19
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Dya52sbcos~kt21w2!cos~kt11w1!sin~a/2!

12scsin~kt21w2!cos~kt11w1!cos~a/2!,

~B21!

Dza52t2.

Expanding expression~B20! in the small parameters/d
[Asbsc/d and taking into account the only first nonze
term, one obtains the following expressions for the disp
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sion interaction of the layers and its first and second der
tives with respect to the anglea in the casea50:

DUa~r 12,t2,t1!'2
J0d4

@r 1212t2#6
, ~B22!

DUa8~r 12,t2,t1!'6
sbsc

d2
J0d6

sin~2kt212w2!

@r 1212t2#8
,

~B23!
DUa9~r 12,t2,t1!'3J0d4
~sb

21sc
2!cos~2kt212w2!1~sb

22sc
2!cos~2kt112w1!

@r 1212t2#8
. ~B24!
d in

e

nd
One notes from Eq.~B22! that at zeroth approximation th
interaction of an arbitrary layer in the casea50 is indepen-
dent of the rotation of molecules around their principal ax
a1 anda2. At the same time, its first and second derivativ
with respect to the anglea @see Eqs.~B23! and ~B24!#
change their signs after the rotation of any molecule by
anglep around its principle axis. Therefore, the total inte
action of molecules in the end-to-end orientationUa is also
independent of the rotation of the molecules around th
principal axes, and its first and second derivativesUa8 andUa9
with the respect to the anglea in the casea50 change their
signs after the rotation of any molecule by the anglep
around its principle axis. Expanding expression~A14! for the
minimal distanceja(0) between the two molecules in th
small parameters/d, one obtains

ja~0!',1d@122~sc /d!21•••#, ~B25!

@ja~0!2,#21'd21@112~sc /d!21•••#. ~B26!

Therefore, after the rotation of any molecule by the anglep,
expressions~A15! and ~A16! for the derivativesja8(0) and
ja9(0) also change their signs, keeping approximately
same absolute values@with an error;(s/d)4]. Thus, the
integrals~24! and ~25! appear to be approximately equal
zero in the end-to-end orientation with the same er
;(s/d)4. Substituting Eqs.~24! and ~25! together with the
third line of Eqs.~14! and~15! into the third line of Eq.~7!,
one obtains Eq.~30!. In other words, one may neglect th
interaction of short molecular axes with each other.

APPENDIX C: MINIMAL DISTANCE BETWEEN ACHIRAL
AND CHIRAL MOLECULES IN SIDE-BY-SIDE

ORIENTATION

Let us determine the minimal distance between an ach
molecule@see Fig. 3~c!# and a weakly twisted quasiuniaxia
chiral molecule@see Fig. 3~b!# in the parallel side-by-side
orientation presented in Fig. 1~c!. A schematic illustration of
the contacting achiral and chiral molecules in the c
s
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ir

e
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e

a1↑↑a2 , b1↑↑b2 , c1↑↑c2↑↑u12, w5p/2 is presented in Fig.
18. In correspondence with the molecular model presente
Sec. III, the coordinates (xn ,yn ,zn) of an arbitrary layertn
of the achiral molecule and the coordinates (xc ,yc ,zc) of an
arbitrary layertc of the chiral molecule in this orientation ar
equal to

S xn~g,tn!

yn~g,tn!

zn~g,tn!
D 5S 2tnsin~g/2!

0

tncos~g/2!
D , ~C1!

S xc~g,tc!

yc~g,tc!

zc~g,tc!
D 5S 2ssin~ktc!cos~g/2!1tcsin~g/2!

r nc1scos~ktc!

ssin~ktc!sin~g/2!1tccos~g/2!
D ,

~C2!

FIG. 18. Schematic illustration of the contacting achiral a
chiral molecules in side-by-side orientation:a1↑↑a2 , b1↑↑b2 ,
c1↑↑c2↑↑u12, w5p/2.
4-20
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ANALYTICAL DESCRIPTION FOR THE CHIRAL . . . PHYSICAL REVIEW E 67, 031704 ~2003!
where the parametertn ranges from2,n/2 to ,n/2, the pa-
rametertc ranges from2,c/2 to ,c/2, and the parameterss
andk define the twist of the chiral molecule. Penetration o
layer tn of the achiral molecule into a layertc of the chiral
molecule is forbidden. The minimal distance between lay
is the average diameterd[(dn1dc)/2. Accordingly to Eqs.
~C1! and ~C2!, the corresponding distance between the m
lecular centersjnc(g,tn ,tc) satisfies the following con-
straint:

d25@jnc~g,tn ,tc!1s cos~ktc!#
21s2sin2~ktc!1tn

2

22tntccosg1tc
222stnsin~ktc!sing. ~C3!

The minimal distance between two moleculesjmin(g) corre-
sponds to the maximal valuejnc(g,tn ,tc). Maximizing
jnc(g,tn ,tc) in Eq. ~C3! separately by the parameterstc and
t2[(tc2tn)/2 in the caseg50, one obtains

tn5tc56
,

2
, ~C4!

where the parameter, is the minimal length (,n or ,c).
Substituting Eq.~C4! into Eq. ~C3!, one obtains Eq.~49! for
the minimal distance between molecules and Eq.~50! for the
derivative of the minimal distance with the respect to t
angleg in the caseg50.

APPENDIX D: DISPERSION INTERACTION OF ACHIRAL
AND CHIRAL MOLECULES IN SIDE-BY-SIDE

ORIENTATION

Let us estimate the dispersion interaction of the ach
molecule with the chiral one in the side-by-side orientat
presented in Fig. 1~c! ~see also Fig. 18!. Performing the same
calculations as in Appendix B, one obtains that the inter
tion DUnc(r nc ,tn ,tc) between a layer of the achiral mo
ecule and a layer of the chiral one and its second deriva
DUnc9 (r nc ,tn ,tc) with respect to the angleg in the caseg
50 are determined by the same Eqs.~B7! and~B9!, respec-
tively, where t75(tc7tn)/2. Indeed, at zeroth approxima
tion these expressions are the same even for two achiral
ecules. Substituting Eqs.~B7! and ~B9! into Eq. ~29!, one
obtains in the supposition,n@d and ,c@d the following
expressions for the total interaction between an achiral m
ecule and a chiral one and its second derivative with res
to the angle between the long molecular axes:

Unc'2
3p

8
J0S d

r nc
D 5,n

d
12J0

D,

d
d5E

D,/2

` dt

@r nc
2 1~2t2!2#3

,

~D1!

Unc9 '
5p

32
J0S d

r nc
D 7S ,n

d D 3

1J0

,c
32,n

3

d3
d7E

D,/2

` dt

@r nc
2 1~2t2!2#4

, ~D2!
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whereD,[,c2,n . One notes that Eqs.~D1! and ~D2! fit
Eqs. ~B14! and ~B15!, respectively, in the two limit cases
D,/d50 and uD,/du@1, where the parameter, equal the
minimal length (,n or ,c). The intermediate case range
really from D,/250 to uD,/2u;r ! with r ! is the distance,
where the dispersion potential vanishes. Since the disper
potential vanishes very quickly, the intermediate range
very small. Therefore, one can restrict his consideration
the caseD,50 without losing any homogeneous features
the potential. Substituting Eq.~D2! into the fourth term of
Eq. ~25! and taking into account Eqs.~7!, ~15!, and~30!, one
obtains in the caseD,50 Eqs.~53!–~56! for the coefficients
J0(nc)

202 , M0(nc)
202 , J2(nc)

202 , andM2(nc)
202 .

At the same time, the expression for the first derivat
DUnc8 (tn ,tc ,r nc) of the interaction between a layer of th
achiral molecule and a layer of the chiral one with respec
the angleg in the caseg50 differs from its analog~B8! for
two identical chiral molecules. Substituting Eqs.~C1! and
~C2! into Eq. ~B3!, where it is assumedDxc[xc2xn , Dyc
[yc2yn , Dzc[zc2zn , expanding the resulting expressio
in the small parameters/d and taking into account the onl
first nonzero term, one obtains

DUnc8 ~ tn ,tc ,r nc!'224~s/d!2J0d6
r nctnsin~2ktc!

@r nc
2 1~2t2!2#5

.

~D3!

Substituting Eq.~D3! into Eq. ~29!, one obtains the function
Unc8 (r nc). Defining the parametersr[krnc andt[2kt2, in-
tegrating the functionr 12

3 Unc8 (r nc) with respect to the vari-
able r nc and using a constraint~27!, one obtains

d24E
j

min

`

r nc
3 Unc8 ~r nc!drnc'212J0S s

d D 2

~kd!3
,c

d
cos~k,c!

3E
kj

min

`

drE
kD,

`

dt
r 4

~r 21t2!5
.

~D4!

Equation~D4! has a simple extrapolation in the three lim
cases

d24E
j

min

`

r nc
3 Unc8 ~r nc!drnc

'F 0, ,n!,c

2
105p

256
J0S s

d D 2

~kd!21S d

jmin
D 4,c

d
cos~k,c!, ,n5,c

2
105p

128
J0S s

d D 2

~kd!21S d

jmin
D 4,c

d
cos~k,c!, ,n@,c.

~D5!

As was already discussed, the intermediate case corresp
to the very small range of the parameters,n and ,c due to
the shortrange of the dispersion potential. The difference
tween the limit cases in Eq.~D5! has a simple explanation
Indeed, the chiral part of the dispersion interaction is ass
ated with the position of the ends of the chiral molecu
4-21
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Thus, the small achiral molecule does not ‘‘feel’’ the ends
the large chiral molecule, and the expression~D5! is there-
fore equal to zero. Conversely, the long body of the ach
molecule suffers the double effect from the ends of the sh
chiral molecule, with respect to the case of the equal mole
lar lengthes (,n5,c). In any case, the sign of the chira
interaction does not depend on the respective length of b
molecules and depends only on the length of the chiral m
ecule. Therefore one can restrict his consideration to the
D,50 without losing any chiral properties of the potentia
as well as homogeneous ones. Substituting Eqs.~D5! into
Eq. ~24! and taking into account Eqs.~7!, ~14!, and~30!, one
obtains in the caseD,50 Eqs.~51! and ~52! for the coeffi-
cientsJ1(nc)

212 andM1(nc)
212 .

APPENDIX E: INTEGRALS Cm,n
K

„X… AND Sm,n
K

„X…

Let us determine the integralsCm,n
k (x) and Sm,n

k (x) as
follows:

Cm,n
k ~x![2k~k21!! E

x

`

drE
0

`

dt
r mtncost

@r 21t2#k

5E
x

`

Cn
k~r !r mdr, ~E1!

Sm,n
k ~x![2k~k21!! E

x

`

drE
0

`

dt
r mtnsint

@r 21t2#k

5E
x

`

Sn
k~r !r mdr, ~E2!

where the integralsCn
k(r ) and Sn

k(r ) are determined by the
following expressions:

Cn
k~r ![2k~k21!! E

0

` tncostdt

@r 21t2#k
, ~E3!

Sn
k~r ![2k~k21!! E

0

` tnsintdt

@r 21t2#k
. ~E4!

Using the obvious recurrent relations

Cn
k11~r !52

]Cn
k~r !

]r
, ~E5!

Sn
k11~r !52

]Sn
k~r !

]r
, ~E6!

and the recurrent relations

Cn11
k ~r !5

]

]a U
a51

$a2k2n21Sn
k~ar !%, ~E7!
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Sn11
k ~r !52

]

]a U
a51

$a2k2n21Cn
k~ar !%, ~E8!

one obtains the following expressions for the integralsCn
k(r )

andSn
k(r ):

C2n
k ~r !5~21!n1k21S 1

r

]

]r D
k21

$pr 2n21exp~2r !%,

~E9!

C2n11
k ~r !5~21!n1k21S 1

r

]

]r D
k21H 2r 2nE1~r !

12(
i 50

n21

~2i 11!! r 2n22i 22J , ~E10!

S2n
k ~r !5~21!n1k21S 1

r

]

]r D
k21H r 2n21E2~r !

22(
i 50

n21

~2i !! r 2n22i 22J , ~E11!

S2n11
k ~r !5~21!n1k21S 1

r

]

]r D
k21

$pr 2nexp~2r !%,

~E12!

where E7(r ) is determined by Eq.~42!. For example, per-
forming differentiation in Eqs.~E9! and ~E11! in the casen
50, one obtains the following expressions for the integr
C0

k(r ) andS0
k(r ):

C0
k~r !5exp~2r ! (

i 5k

2k21 Wi
k

r i
, ~E13!

S0
k~r !5E2~r ! (

i 5[k/2]

k21 Xi
k

r 2i 11
1E1~r ! (

i 5[(k11)/2]

k21 Yi
k

r 2i

2 (
i 5[k/2]11

k21 Zi
k

r 2i
, ~E14!

where the square brackets denote the integer part of the
responding value and the coefficientsWi

k , Xi
k , Yi

k , andZi
k

are determined by the following expressions:

Wi
k[

p~ i 21!!

~2k2 i 21!! ~2i 22k!!!
, ~E15!

Xi
k[

~2i !!

~2k22i 22!! ~4i 22k12!!!
, ~E16!
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Yi
k[

~2i 21!!

~2k22i 21!! ~4i 22k!!!
, ~E17!

Zi
k[

~2i 22!!!

~2k22i 21!! (
j 5k

2i 21
~2 j 22i 21!!!

~ j 2 i !~2 j 22k!!!
. ~E18!

Substituting Eq.~E13! into Eq. ~E1! and using the relation

E exp~2r !

r i
dr5

exp~2r !

~ i 21!! (
j 51

i 21
~21! i 2 j~ j 21!!

r j

1
Ei~2r !

~ i 21!!
~21! i 21, ~E19!

one obtains the following expression for the integralCm,0
k (x)

in the casek2m>1:

Cm,0
k ~x!5exp~2x! (

j 51

2k2m22 Wm, j
k

xj
1Ei~2x!Vm

k ~k2m!,

~E20!

where the functionVm
k (a) and the coefficientWm, j

k are de-
termined, respectively, by the following expressions:

Vm
k ~a![ (

i 5a

2k2m21 Wm1 i
k

~ i 21!!
~21! i , ~E21!

Wm, j
k [~21! j 21~ j 21!!Vm

k ~p!, ~E22!

where p[k2m if j 51, . . . ,(k2m21), or p[ j 11 if j
5(k2m), . . . ,(2k2m22), and where the coefficientsWi

k

are determined by Eq.~E15!. For example, substitutingk
55, m54 into Eq.~E20!, one obtains Eq.~40! for the inte-
gral C4,0

5 . Substitutingk55, m52 into Eq. ~E20!, one ob-
tains Eq.~75! for the integralC2,0

5 .
Substituting Eq.~E14! into Eq. ~E2! and using the rela-

tions

E E2~r !

r 2i 11
dr52

E2~r !

~2i !! (
j 50

i 21
~2 j 11!!

r 2 j 12
1

E1~r !

~2i !! (
j 50

i 21
~2 j !!

r 2 j 11

1
2

~2i !! (
j 50

i 21
~2 j !!

~2 j 11!r 2 j 11
1

2Q~r !

~2i !!
, ~E23!
03170
E E1~r !

r 2i
dr52

E2~r !

~2i 21!! (
j 50

i 22
~2 j 11!!

r 2 j 12

1
E1~r !

~2i 21!! (
j 50

i 21
~2 j !!

r 2 j 11

1
2

~2i 21!! (
j 50

i 21
~2 j !!

~2 j 11!r 2 j 11
1

2Q~r !

~2i 21!!
,

~E24!

where the functionQ(r ) is determined by Eq.~43!, one ob-
tains the following expression for the integralS2m,0

2k11(x) in
the casek2m>0:

S2m,0
2k11~x!5E2~x! (

j 50

2k2m21 Xm, j
k

x2 j 12
2E1~x! (

j 50

2k2m21 Ym, j
k

x2 j 11

2 (
j 50

2k2m21 Zm, j
k

x2 j 11
12Q~x!Rm

k ~k2m,k2m11!,

~E25!

where the functionRm
k (a,b) and the coefficientsXm, j

k , Ym, j
k ,

Zm, j
k are determined, respectively, by the following expre

sions:

Rm
k ~a,b![ (

i 5a

2k2m Xm1 i
2k11

~2i !!
2 (

i 5b

2k2m Ym1 i
2k11

~2i 21!!
, ~E26!

Xm, j
k [~2 j 11!!Rm

k ~p,p11!, ~E27!

Ym, j
k [~2 j !!Rm

k ~p,q!, ~E28!

Zm, j
k [

1

2 j 11
@2~2 j !!Rm

k ~p,q!1dpqZm1 j
2k11#, ~E29!

where p[k2m, q[p11 and dpq[1 if j 50, . . . ,(k2m
21), or p[ j 11, q[p anddpq[0 if j 5(k2m), . . . ,(2k
2m21), and where the coefficientsXi

k , Yi
k , and Zi

k are
determined by Eqs.~E16!–~E18! respectively. For example
substitutingk52, m52 into Eq.~E25!, one obtains Eq.~41!
for the integralS4,0

5 . Substitutingk52, m51 into Eq.~E25!,
one obtains Eq.~76! for the integralS2,0

5 .
Performing differentiation in Eq.~E12! in the casen

50, one obtains the following expression for the integ
S1

k(r ):

S1
k~r !5exp~2r ! (

i 5k21

2k23 Fi
k

r i
, ~E30!

where
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Fi
k[

p~ i 21!!

~2k2 i 23!! ~2i 22k13!!!
. ~E31!

Substituting Eq.~E30! into Eq. ~E2! and using relation
~E19!, one obtains the following expression for the integ
Sm,1

k (x) in the casek2m<1:
s.

.J

l, Z

J

ki

,

s

J.

ro

hy

03170
l

Sm,1
k ~x!5exp~2x! (

j 5k2m21

2k2m24 Fm, j
k

xj
1Ei~2x!Gm

k ~1!,

~E32!

where the functionGm
k (a) and the coefficientFm, j

k are deter-
mined, respectively, by the following expressions:

Gm
k ~a![ (

i 5a

2k2m23 Fi 1m
k

~ i 21!!
~21! i , ~E33!
Fm, j
k [F (

i 5k2m21

j
~2 i !!

~2 j !!
Fm1 i

k if j 5~k2m21!, . . . ,0

~21! j 21~ j 21!!Gm
k ~ j 11! if j 51, . . . ,~2k2m24!,

~E34!

where the coefficientsFi
k are determined by Eq.~E31!. For example, substitutingk55, m54 into Eq.~E32!, one obtains Eq.

~39! for the integralS4,1
5 .
a,

,

y
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