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Analytical description for the chiral nematic state in terms of molecular parameters
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An analytical description for helical twisting in chiral liquid crystals is derived, which explores the corre-
lation between the macroscopic properties of a liquid crystal and the parameters of single molecules. This
theory is based on a simple model of a spiral-like rigid molecules that possess a limited number of parameters,
each having transparent geometrical meaning. Expressions for the macroscopic helical pitch in the chiral
nematic phase and the nematic order parameters were obtained in terms of molecular parameters. The theory
explains the experimentally observed helical sense inversions induced by a change of temperature or mutual
concentration of components in mixtures. It is also shown that the helical sense inversion may be observed in
the process of denaturation of polypeptides. Different reasons for helical sense inversions were identified, such
as competition between the dispersion attraction and the steric repulsion, distinct mechanisms of the steric
packing for different kinds of molecules, and biaxiality of molecules.
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I. INTRODUCTION we consider the pure liquid crystal, consisting of identical

chiral molecules. In correspondence with the experiment

Principles of the molecular organization in chiral me-[2-6], the helical sense inversion with the temperature varia-

sophases are of the great interest since they throw light ofon may take place in a chiral nematic even in the case of
the macroscopic properties of the liquid crystals. Differenttn® Stable molecules, having the same handedness. We con-

liquid crystals under similar conditions may behave in differ- CENtrate on the two reasons for the helical sense inversion:
the competition of the steric repulsion with the dispersion

ent ways. For example, variation of temperature, Concemra_ttraction and the biaxiality of the molecules. These two fac-
tion, and other external parameters may lead to the change ors were noticed by many authors to be responsible for vari-

the optical aCt'\.”ty In one sample and may not in the Otherous helical sense inversions in different classes of the chiral

. e n‘?ematics. The detailed review of these investigations is pre-
macroscopic parameters of the liquid crystalich as the sented, for example, in Reff7]. To combine the dispersion

nematic order parameter and the twisting powand the  attraction together with the steric repulsion, many authors
microscopic features of single moleculesich as their shape [g_11] used a special effective potential that took into ac-
and interactioj? count both effects. Thus, the resulting expression for the he-

In an earlier papelrl] we derived the mean-field theory of jical wave number contained both the dispersion and steric
the chiral nematic state, based on the principles of the statigontributions. The signs of these contributions, however, re-
tical physics and the continuum theory. It allowed us to esmained undetermined since the effective potential was not
timate numerically the value of the helical twisting power for accurately associated with the parameters of a molecular
the liquid crystal consisting of the molecules from our pre-model. Recently the importance of a molecular biaxiality
vious model. Nevertheless, that model was difficult to usewas recognized by several authdi®,13. In this paper we
and the analytical expression for the helical pitch in terms ofresent a quantitative scheme that allows one to estimate the
molecular parameters was not obtained. effect of the molecular biaxiality.

In this paper we suggest a method that explores the cor- The second experimentally observed situation is the heli-
relation between the molecular parameters and the macreal sense inversion in binary mixtures with a change in the
scopic properties of a liquid crystal. We use a model of themutual concentration of the components. It was established
biaxial spiral-like molecule with a small set of parametersthat inversion may take place even in the case when one
having transparent geometrical meaning. Any pair of mol-component is achirdll4—17. In this paper, we notice and
ecules possesses dispersion attraction as well as steric reppltove analytically that the identical molecules and the unlike
sion. The resulting expressions predict the conditions for thenolecules have different mechanisms of steric packing. This
helical sense inversion in an arbitrary liquid crystal. Vice situation, as we suppose, is responsible for the helical sense
versa, using these expressions one may estimate the moledoversion in mixtures of chiral and achiral molecules.
lar parameters needed for the helical sense inversion in the Finally, we consider the possibility of the helical sense
appropriate conditions. inversion in polypeptides which may happen during the pro-

In our theoretical studies we focus on the three situationgess of denaturation. Since our analytical expressions for the
that are investigated experimentally by many authors. Firshelical wave number contain molecular parameters explic-

itly, one can simply change some of them to obtain the heli-
cal sense inversion. Molecular length is one of these param-
*Electronic address: emel@polly.phys.msu.ru eters. On the other hand, it is well knoyh8] that the long
URL: http://polly.phys.msu.rutemel/ spiral molecules of protein melt into small pieces during de-
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naturation. Therefore, the possibility of the helical sense in- K,

version exists. This situation is briefly discussed in the =i (4)
present paper where we suggest a simple scheme of denatur- 2

ation.

The paper is arranged as follows. In Sec. Il we introducevhere K, is the twist elastic constant arlg is a pseudo-
the alternative effective molecular interaction and derivescalar parameter, which is sensitive to molecular chirality.
analytical expressions for the nematic order parameters arithe gradient expansion of the director results in the follow-
helical wave number. In Sec. Ill we suggest our models ofng interpolations for the parameteks andK,, [1]:
chiral and achiral molecules and define the effective interac-
tion between similar and dissimular molecules. In Sec. IV we
analyze different situations, such as variations of tempera-
ture, concentration, or molecular length which may cause the
helical sense inversions. Finally, in Sec. V we present the

1 T
ke~gp? 2 7, mII(5)SuS,+ MI(L,)S,D,
M V=

1(uv

main results of the paper. +M%2,S,D,.+Qi(5,D.D,], 5
Il. EFFECTIVE INTERACTION OF CHIRAL MOLECULES 1 T
202 202
AND THE CHOLESTERIC STATE Ko~ Epz,u;‘;l 773218, S, M3(;,,)S,.D,
In this section, we suggest a description for the interaction 202 202
between anisotropic chiral molecules, which determines +M%0SD Q%D DL (6)
macroscopic properties of the liquid crystal: the nematic or-
der parameters and the helical twisting power. In the com- ILA

The coefficientsly,), My(,,), andQpi,) in Egs.(3), (5),
and(6) are the moments of the corresponding coupling con-

stants:

mon case of a multicomponent system, the prime nemati
order paramete$, and the biaxiality order parameter,, of
the componeny. obey the generalized Maier-Saupe theory

[1]:
1 (1 2 JInL(,Aw):f drlzrgzle,LLﬁ(rlz),
Su=1 dtf dyy Py () exd Uye(t,¢) ], 0
wl-1 Jo
1 (1 or 3 ML =fmdr rU2MILNr L), 7
DMZI_f dtJ d:,bi(l—tz)COiZ lﬁ) n(uv) 0 128 12 ,uv( 12) ( )
Xexd Upe(t,y)], (2) N - o
(?n(/x,v)= fo drer?_Z ;Lv(rlz)'

wherel , are the normalizing integrals,

The coupling constantd:)(r1,), M-} (r1,), andQ\-)(ry,)
in Eq. (7) are the coefficients of the expansion of the effec-

tive intermolecular potential; in a complete set of spheri-

parameters= cos# and s describe the orientation of a mol- €@l invariants|1,22-23. The effective interactioVgy of a
ecule with respect to the director, and the mean-field energ{polecule of typeu with a molecule of typev is an even
U of the componeng is interpolated as follows: u_nctlon with the respect to.the orlentatu_)n_ of both moIepuIes
(since the phase observed is nonpplaut it is not even with
- respect to the orientation of intermolecular veatgy (since
P P 202 202 the cholesteric distortion is obserye®ne can split the ef-
Unr(t.9) kg T Z‘l 7t1300uSo + MogunDr1P2() fective interactionV” into a large homogeneous par{”
(which is even with respect to the orientation of the intermo-
+[M§%,S,+ Q55D 13 (1~ t?)cog 2 )}, lecular vector and a small energy of distortion;” (which is
3) od;j with respect to the orientation of the intermolecular vec-
tor):

1 2
= | dt] ayextUfiectn, @

where is the total number of components in the system. If

at least one of the components is chiral, then cholesteric VA (1,2)=VE (1,2 + VA (1,2). (8)
distortion of the nematic state takes place. This is usually

described[19-21] in terms of elastic constants. Then the

helical wave number is determined by the following expres-Then the homogeneous parg”(1,2) expands in spherical
sion: invariants as
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VE(1,2) =300+ 3207 5(ay - ap) + I220Po(ay - Usp) + I%2P (8- Usp) + M2 Po(ay - ) = Pa(ag - Co) } + M22A Py(8,- by)
—Pa(a- C1)}+M220{P2(b1 Up) = Pa(Cy-Ugp)} + MY {Pz(bz Uz1) — Pa(Cy- U21)}+Q A P,(by-by)
—Pa(by-Cp) = Py(by-¢) +Pa(Cy-Cy)p+ - -, 9
and the energy of distortiod’”(1,2) has the following expansion:
VE"(1,2)= 321y 3p) ([81 X @] - Ugp) + MZEA (ag - by) ([a1 X ba] - Usp) — (81 Co) ([ X o] - Ugp) )+ M52A (ap- by)
X ([@X by ] ) = (8- 1) ([82 X €11 Upp) }+ QA (b1 by) ([b1 X by ] Un) = (b C) ([ X €] Uig)
+(Car €)([€2X C1] - Upp) = (ba- € ) ([P X €y U+ - -, (10

where the orientation of the first molecule is determined bying Fig. 1, where the three mutual orientations of the inter-
the set of the orthogonal unit vectora;( by, c;), the ori-  acting molecules are presented. In Fi¢g)lthe long axis of
entation of the second molecule is determined by the vectorthe first molecule, is parallel to the long axis of the second
(ay, by, ¢y, and the direction of the intermolecular vector moleculea, and is parallel to the intermolecular vecto,.

ri, is determined by the unit vectar,= —u,;. We assume The angle between the corresponding short axes is equal to
that the axes, , a, correspond to the principal elongation of «. Figure 1b) is obtained from Fig. (&) by the change
the molecules and call them “long axes.” The pails { ¢;) (&,b;,c)—(bj,¢,a), a— B, (i=1,2) and Fig. lc) is ob-
and (,, c,) are called “short axes.” Taking into account tained by the following change:b(,c¢ ,&a)—(c ,a ,b;),
that in Egs.(9) and (10) the only coefficients with equal B—y. Rewriting Eq.(10) in the cases presented in Fig.
indicesl and\ are used, it is enough to estimate for each pairl(a)—1(c), then differentiating it with respect to the corre-
of componentsp and v the three achiral coupling constants sponding variable anglen{, 8 or y) and solving the result-

J20Ar 12), MEOA(r 1), Q;‘)Z(rlz) and the three chiral coupling ing equations for the chiral coupling constadfs?, M2
constants] 2(rlz) M? rlz) Q?*r12). One notes that the andQZ}?, one obtains
constantsJ'L'(r 1) andQ !(r1p) are also symmetrical with " »
respect to ‘the commutation of the indicesand v: 212:1( INVeg INVeg ) 1 9VEy
w2\ gy B |, 4 Ja _
I(ri) =Ih(r 1)), (11) ’ om0 "
1[oVE IVE!
||_| Ll 212 212_ ef _ T Vet
r r 12 MO +My ——( ) (14
( 12=Q, ( 12) (12 “ o2\ oy S B ’BZO
since they describe the correlation between the same axes: v
the long axis of the first molecule with the long axis of the 212:£ IVer
second molecule, or the short axes of the first molecule with N .

the short axes of the second molecule. At the same time the
constantM!;)(r,) is not symmetrical with respect to the Rewriting Eq.(9) in the cases presented in Figga)-1(c),
same commutat|on then differentiating it twice with respect to the corresponding
variable angle &, B or ) and solving the resulting equa-
MI(r) # My (1), (13)  tions for the achiral coupling constant}?, M%7, and
Q2%, one obtains
since it describes the correlation between different axes: the

long axis of the first molecule with the short axes of the 202 1 (92vfe‘fV (92vng 1 (?ZV
second molecule. Let us estimate the coupling constants us-J,, = — = + ,
a 61 992 a3? 12 da?
y=0 =0 =
(a) (b) (0 , )
1( 0°VES IVEY
bi 1 4 bs a, faz ai) | f a2 M;ZL?/Z"'ME?LZZ_E 9 z P Z ‘ , (19
¥< c C2 by Y y=0 B B=0
Ta C2 C1 Jé) ’y b2
: I I Q202: _ i _ﬁzvgfv
v 12 a2
ay || ugs || 2 by || uss || be c1 || e a=0
FIG. 1. Three mutual orientations of biaxial molecules “1” and Thus, the chiral coupling constan.’, M2'?, and Q%2
“2” which are used for calculation of the coupling constants. appear to depend on the first derivatives of the effective po-
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v +1 Vs

0.5} 3000 -

(19

y=0
-0.6

T
N

One notes that curve 2 fits curve 1 in the vicinity of the most

E>‘a 07k 3 probable pointy=0 and the largest divergence of curves 1
= and 2 arises in the least probable poipts = 7/2. However,
S* sl the isotropic constani®® is never used in the study of the
cholesteric ordering. In other words, the absolute value of the
09 effective potential makes no sense. On the contrary, the an-

isotropic constan?°? determines the width of the peak in
curve 2 and the chiral constadt'? determines its declension
-1.0F from pointy=0. Therefore, the effective potenti@d6) with
! . i . - 212 1202 000 i
156 078 000 078 156 constants)<+, J ” andJ™, determined t:y Ecis(_‘L?)., .(18)
; and, (19) respectively, demonstrates the “true” position and
v (radians) . . . .
width of the peak. This approach essentially differs from the
FIG. 2. Dependence of the effective potential on the angley ~ standard interpolatiofil] that “cares” about the depth of the
between the long molecular axes and a,: (1) “real” site-site  effective potential instead of its width:
potential;(2) new model potentialachiral coupling constant¥°? 202 2,y .
andJ®® are determined by Eq$18) and(19)]; (3) standard model J?%~2(Vg—Vey), (20
potential[the same constants are determined by E2.and(21)].

3000~ 3 Vit 2Vey). (21)
tential VL with respect to the principal rotation angles,

whereas the achiral coupling Constaﬂligf' M;ZLOVZ, aninOf HereV!tLf anqvéf are the values of the effecti_ve poten_tial_ in
appear to depend on the second derivatives of the effecti® orientation with parallel and perpendicular principal
potential with respect to same angles. To demonstrate tHéXes, rz?)?pectlvg(l%. The effective potentiih) with constants
accuracy of this interpolation, let us fix two equivalent qua-J~ 5 3% andJ™, determined by Eqs17), (20) and(2),
siuniaxial[37] chiral molecules some distance apart. To sim-espectively, fits the “real” potential in pointy=0 andy
plify the expression for the effective intermolecular potential= = 7/2 (see curve 3 in Fig. )2 Nevertheless, the peak in
Vs, let each molecule rotate only in the plane perpendiculafurve 3 appears to be unsupportably wide. This leads to the
to the intermolecular vectar,. Then one obtains instead of Mistake in the vicinity of the most probable orientation of
Egs. (8)—(10) the following expression for the effective po- molecules, which corresponds 4e=0. Therefore, interpola-

tential: tion (20) for the anisotropic constad?% is less preferable
than interpolation(18).
V() =%+ J292p,(cosy) + I cosy siny+ - - -, In the general case of biaxial molecules the anisotropic

(16) coupling constants are determined by E@s) and (15).

Substituting Eqs(14) and(15) into Egs.(10) and(9), respec-
wherevy is the angle between the principal molecular axgs tively, one obtains the model potentid) fitting the “real”
anda,. The first and the second terms in E@6) describe potential in the vicinity of the orientation with parallel cor-
the large homogeneous part of the potential, whereas th@sponding axesa|a;, bs||b,, cif|c;) in the three cases
third term is a small chiral addition, which is responsible for presented in Fig. 1, which differ in the direction of the inter-
the helicity. The coupling constanf€®? and J?'2 are inter- molecular vectorr;,. Since the relative orientation of the
polated then by the following simple expressions: two molecules with parallel corresponding axes is the most

probable in the nematic state, interpolatiqdg) and (15)

Vv demonstrate fitting in the most important area. In the chiral
212 U Vef .
Joe= ay ' 17 nematic state, the most probable angles between correspond-
r=0 ing axes of the two molecules may be equal to a small non-
) zero values. Nevertheless, one may assume that the orienta-
202 L9 Ves 18) tion with parallel corresponding axes belongs to the
T3 P ' “vicinity” of the most probable orientation, since the choles-

y=0 teric distortion usually accounts for only a few thousandths
of the molecular dimension.

Let us determine the effective intermolecular potential in
the same manner as in Ref28-31]. The two factors that
are known to influence the behavior of chiral nematic are the
steric repulsion and the dispersion attraction of molecules:

which are analogous to Eqgl4) and (15). The dependence
of the effective potentiaV/; on angley is presented in Fig.
2. Curve 1 corresponds to the site-site interactia,27]
between chiral molecules. Let us call it “real” potential.
Curve 2 in Fig. 2 corresponds to the model potentiks)

with constantsJ?'? and J2%2 determined by Eqs(17) and VAY(1.2)=( — IKaTO - (Fro—
(18), respectively, and the isotropic constdft® determined et (1= eT8ull12~ &)
by the following expression: —[1-0,,(r=&21U,,(1,2). (22
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In Eq. (22) the step function® ,,(r1,— &) represents the
excluded volume effects) ,,(1,2) is dispersion interaction
between the molecules 1 and i is the Boltzmann con-
stant, T is the temperature, and the factdrdepends on the
packing fraction®. It has the following expression in the
Parsons approadi32,33:

In(1—®)|
9= > . (23
In the case of low density one obtaifis=1, as in Onsager’s
theory[34]. The angular brackets in E¢R2) denote the part
of the corresponding expression which is even with respect
to the rotation of any moleculie= 1,2 by the angler around
any of its axes;, b; or ¢;. The coefficients3 %, , M§?2 .,
and Q3¢%,,, which are used in Eq(3) for the mean-field a b C
energyUfe, the coefficients)i(?,), M52, , andQi(:,),
which are used in Eq(5) for the pseudoscalas,, and the
coefficientsd3%,,, M3%%,,, andQ3%,), which are used in
Eq. (6) for the twist elastic constar,, may be obtained
after the corresponding integration of the coupling constant¥hich define the direction of the corresponding short dxes
in Eq. (7). Substituting Eqs(14) and (15) into Eq.(7) and andc. One notes that the main section of the tube is not
taking into account Eq(22) for the effective potential, one parallel to the plane of short axdésand c. Its inclination

FIG. 3. Molecular model{(a) intensively twisted;(b) weakly
twisted; (c) achiral.

obtains the expressions for the coefficiedfy), ., My, ~ depends on the helical wave numiigsemiaxesr,, o and,
andQJy,,, that appear to contain the integrals of the follow- In the biaxial caser,# o, positiont along the principal
ing two types: molecular axisa. Let us fix parameter=0 for the center of

molecule. Then the parameteranges from—¢€/2 to €/2,

o I , where¢ is the length of the molecule. Each end of the tube is
fo drygh 1 Ver (ri] capped by the semisphere of the same dianktany layer
t of such a molecule has the following coordinatdse co-

. * N ordinate axes, y, andz are parallel to the molecular axbs
=—OkgT(&,,, 6., — ; drygf U, () ), (249 ¢, anda, respectively.

o , . X o, cogkt+ @)
| dnatavereon .
0 y|=| ocsinkt+e) |. (26)
= = OKe (&), €0,) 2060, 60,0, (£u)) ‘ !
—nokaT(E", 1(5;“})2)_ fx droori,ul,(r) ), Here ¢ is the structural parameter corresponding to the turn
£, of the molecular center=0 around the principal molecular

(25) axis a with respect to the short axks For simplicity of the
following expressions, let us suppose that

where §,,, is the minimal distance between a molecule of
type u anq a mplecule of type, which obvioysly depends ¢>d, kd=1, o,<d, o.<d. (27
on the orientation of both molecules. The first and second
derivatives of the minimal distancé,, and the first and _ _ _
second derivatives of the dispersion attractlop,(r;,) in Most of the chiral molecules are known to satisfy this con-
Eqgs.(24) and(25) are considered with respect to the variablestraint. The dispersion interaction of real molecules consists

anglesa, B, or y in correspondence with Fig. 1. of the atomic dispersion contributions. If the dispersion in-
teraction of the separate atoms with each other is isotropic,

Ill. MODEL OF A CHIRAL MOLECULE AND THE the only reason for the nematic ordering and helicity is the
MOMENTS OF COUPLING CONSTANTS anisotropic and chiral composition of these atoms inside the

molecules. The aggregate interaction of the two molecules is
To determine the minimal distance between moleculegalled “site-site” potential[26,27]. It cannot be expressed
and to define their dispersion interaction, let us consider thanalytically in terms of the relative position and orientation
universal molecular model presented in Fig. 3. A moleculeof molecules. Nevertheless, in the simple case of identical
consists of a rigid spiral-like tube with diametdr In the  atoms (or atomic groups constituting the same molecule,
common case, this helix has unequal semiaxgsand o, one can change over from the summation by atoms to the
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TABLE |. Set of the parameterg™ for two molecules having
parallel or antiparallel axes, b, or c. For example, the orientation
with parallel long axes and antiparallel short axes is symbolized as
{a,—b,—c}.

Orientation - *

(3 (3
a,b,c 0 ¢
a,—b,—c 2 o+ ml/2
—ab,—c - 0
—a,—b,c —p+7l2 72

the orientation presented in Fig(a} after the rotation of the
whole molecule around its long axésby the anglewr. This
orientation is described by the same E26) with the sub-
stitution ¢— ¢+ 7. The orientations presented in Figgcy
and 4d) are obtained from the orientation presented in Fig.
4(a) after the rotation of the molecule around its short dxis
or c respectively, by angler. These orientations are de-
scribed by the same Ed26) with the substitution{o—
—¢,t——t} or{¢o— — ¢+ m,t— —t}. One can see that only
four different orientations of the two molecules having par-
allel or antiparallel axes are possible.

Let us first consider a pair of identical molecules. The
relative odd orientations of such a pair may be described in

FIG. 4. Four odd orientations of a molecule which have equalf€rms of two parameterg™=(¢,+ ¢;)/2, where both pa-

probabilities.

rametersp, and ¢, may be equal tap, o+, —¢ Or — ¢
+ 1, depending on the choice of the odd orientation of mol-

integration along the molecular bodies. This can be done iecules 1 and 2. The total set of parametgtsis presented in

the distance between the neighboring atofos atomic
groups is much less than the molecular length Suppose
that an arbitrary layet, of the first molecule attracts an

Table |, where the short symbolization of the corresponding
odd orientation is given in the first column. For example, the
orientation with parallel long axes and antiparallel short axes

arbitrary layert, of the second molecule via standard disper-iS symbolized aga, —b, —c}. The odd orientations have

sion potential:

AU(ty,tp)~— (28

Aréyty )

whereAr 1,5(t,t,) is the distance between the corresponding

layers. If both molecules satisfy constrai(®7), one can
change over with the unity Jacobian from integrating alon

the helical molecular bodies to integrating along their prin-
cipal axes, and the aggregate dispersion interaction may bg0.2(«

approximated by the following double integral:

€412 €512
Ulzzj dt1J dtz AU(tl,tz)
751/2 7(2/2

(29

equal probabilities, since the phase observed is nonpolar.
Thus, the angular brackets in Eq24) and(25) assume sim-
ply an arithmetic mean over the four orientations defined in
Table I. Let us enumerate them by index1, . . . ,4increas-
ing with the growing minimal distance between molecules.
One notes that enumeration will be different in the cases
presented in Figs.(2)—1(c). Accordingly to the scheme used
in Sec. ll[see Egs(14) and(15)], the “end-to-end” orien-
ation presented in Fig.(&) determines only the coefficients
%y and Q2 describing, respectively, the achiral and
chiral interactions between the short molecular axes. It is
proved in Appendix B that

Qo2 ~ Q3% ~ iz, ~ (ald)?, (30)

Potential(29) obviously depends on the relative position andwherea is the geometric mean of the parametegsandor .

orientation of the interacting molecules. Let us consider twoThus, all the coefficient®q;,,) ,

chiral molecules having parallébr antiparallel correspond-

202 202 212
Q3(%,) andQi(;,) may be

neglected with an error (o/d)* which becomes insufficient

ing axes in the three cases presented in Fig@-1(c). One  even fora/d~0.5. It may be proved that Eq30) is also
notes that a biaxial chiral molecule is asymmetric with re-valid in the case of two dissimilar molecules, in supposition
spect to its molecular axes b, andc. Any molecule in the thato is an arithmetic mean of the corresponding parameters
pair is therefore assumed to have one of the four odd orierfor two molecules. Performing calculations presented in Ap-
tations as presented in Fig. 4. Let the parameter Eq.(26)  pendix A, one obtains the following expressions for the mini-
describing the structure of a molecule correspond to Figmal distance between two identical chiral molecules in the
4(a). The orientation presented in Figbd is obtained from  “side-by-side” orientations presented in Figgb}, 1(c) and
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the first derivative of the minimal distance with respect to theand where the functiongX, (x) andsﬁm(x) are determined

corresponding rotational anglg (or y) in the case8=0 or
y=0:

&p o= \d?—(2t7)?+ 20y, Jsin(kt"+¢7)|[, (3D
& = —kopoLog(kt +¢7). (32

Here the parametetr™ (¢~ ) is the root of the following

equation:
kob,ccoikt*ﬂp’)\/d?—(Zt* 2= +2t, (33
where the “—” sign corresponds to the case m<<¢~

+27n=<0 (n is integey, the “+” sign corresponds to the
case X ¢ +2mn=<m, and thee™ parameter is equal to
one of the four values presented in Table I. Performing cal-
culations presented in Appendix B and taking into account
Eq. (24), one obtains in suppositiof27) the following ex-

pressions for the chiral coefficient§; ) andM (>

1 4
I/ d*=— g OkaT 2 [E(DE(D) +&x(1) (D

1 oo 3£ N
a0 gz (KO°g(Sii (14

+S;1(2,3c092¢)]—{C36(2,9+[C3 (1,9
—B~Jcog2¢)}cog k) ~[S]5(2,3

+S; 0(1,4coq 2¢)]sin(ke)), (39)

1 4
MEE )/ d'= — 7g0keT 2, [E(DE) — £(DE()d*
30757 ka2 L (87 (1.4
~ 256 o?( ) a([ 11(1,4)
+5;1(2,3c082¢)]—{C3 (2,3 +[CFp(1,4)
—B"Jcog2¢)}cogkl) —[S(2,3

+S; (1,4 coq 2¢)Isin(ke)), (35)

by Egs.(E1) and(E2) (see Appendix E respectively. Here
we present the analytical expressions for functi@3§(x),
C3(X) andS; o(x) which are used in Eq$34) and(35):

r#t sint

S0 (X 5768fwdtfwdr—
41(X) 0 x o [r2+t2]°

2 37
S +5x 1+ 5x2)—

3 2
37 _.
Xexp(—Xx)+ 7E|( —X), (39
2 (%) 768fmdtfmd rcost
X)= [———
4.0 0 o [r2+t2]P
1 15
=(—x1+5x2+14x3+ 144 22
3 8
37 _.
Xexp—X)— ?EI( -X), (40
S50 768fmdtf°°d rsint
X)= [—————
4,0 0 o [r2+t2]
15
=(5x*2+14x*4)§E*(x)
1 15
S -1 -3+
+ 3X +14x )SE (x)
3 , 4 3 "
=Xt X Q). (41)
where
E*(x)= exp(—x)Ei(x) ¥ exp(x)Ei(—Xx), (42)
“1|m X\ .
Q(X)Ef —[——arctarﬁ— sin(t)dt. (43)
ot]2 t

whereJ, is the constant having the dimension of energy and _ ) oo
indexi denotes the number of the odd orientation from TableT N€ first term in Eqs(34) and (35) corresponds to chirality
I, increasing with the growing minimal distance. The param-Of the steric repulsion, and the second term corresponds to

etersB*, CK(i,j) and S (i,]) in Egs.(34) and(35) are
determined, respectively, by the following expressions:

1057 2
BrETk—‘*gl (&A=& 4],

(36)
Chn(i,1)=Clin(i) = Clon(i),
Stnli+1) =St = Sa(i), (37
where
Chn(D=Cr n(k&d(1)) = C, 1 (kép(i)),
Shin(i) =Sk n(KE(1)) = Shy 1 (K&y(i)), (38)

chirality of the dispersion attraction. One notes that in the
case g, # o both chiral coefficientsJi(;,, and M3 )
strongly depend on the molecular structural parameter
The corresponding dependences are presented in Fig. 5 for
Jo/kg=1300 K, T=300 K and the volume fractiond
=0.6. Curveq1)—(3) in Fig. 5 correspond to the variations
of the coefficientd(’ ) in the casesry/oc=1, 1.4 and 2,
respectively. Curve$4)—(6) correspond to the variations of
the coefficientMi{’,, in the same three cases. One notes
that the behavior of the coefficieM3(. ,, is almost indepen-
dent on the relatiorry /o, whereas the behavior of the
coefficientd%(Z ) strongly depends on this relation.

Taking into account Eq(25) and using calculations pre-
sented in Appendix B, one obtains in suppositi@T) the
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FIG. 5. Interaction coupling constants as functions of the mo-
lecular parameterp: (1)—-(3) Ji(5,); (D—(6) MZZ,); (1.,(4) oy osl
=0.=0.3d; (2),(5) 0,=0.3"d, 0,=0.24d; (3),(6) 0,=0.4d, o, n (b)
=0.2. a
O o2t
following expressions for the achiral coefﬂmenﬂé(w), 2
M202 3202 jo4ap202
O(P«M) v V2(pp) 2(pp) - 0.1k
J202 jd3= > € d42 + 44
O(p,,u,) 3072 [§C (I) Eb (I )] ( ) 0.0k 1
3 4 06 07 08 08 10 11
202 s_ 2T 5 f 4 Cain eed . . . . . .
5 £\3 4 FIG. 6. Primary order paramet8, (a) and relation of the order
I5ld®= JO(—) 2 &%)+ &, %(1)], (46)  parameter® /S, (b) as functions of the temperaturet) o,= o
1536 7\d/ ~ = =0.3d; (2) 0p=0.35, 0:;=0.25d; (3) o, =0.4d, o-,=0.2d.
4
202 5_ —20\ g2, . . . L L
MZ(W)/d 3072 ( ) 21 [é.“()— &, ()] (47) lowing problem arises with the determination of the principal
=

short directions of the interacting molecules. One notes that
the principal directions, b, andc of the same molecule may
for different valueso /d /d. and kd be chosen in different ways depending on the molecular pair.
MaGusy DG b= e " Th t choice of the molecul hould give th
since the minimal distance between identical chiral mol-1h€ correct choice of the molecular axes should give the

ecules essentially depends only on these parameters andGrrrect extrema of the effective potential which are mainly

almost independent on the parameterSubstituting the re- determined by the minimal distance between interacting mol-

lation MS(();ZLM)/JS%M) into the system of equationd), one  €cules. Restricting imagination with the molecular model

obtains the temperature variation of the primary order paPresented in Fig. 3, one can unambiguously define the main
rameterS, and the ratio of the order parametebs, /S, directiona for each molecule. Nevertheless, the short direc-
which are presented respectively in Fig$a)6 6(b) for the  tions b andc still depend on the molecular pair. One can
caseso,/o.=1,1.4, and 2. One can see that the relationignore this dependence if both molecules are intensively
D, /S, is essentially nonzero in the casg# o and grows  twisted[k,{,>2m, n=1,2, see Fig. @], because in this
with the increasing temperature. case the biaxiality of both molecules is mainly determined by
The situation becomes more complicated when the interinequality of their helical semiaxesr{f# o, ©=1,2). In
acting molecules are dissimilar. One can see from(Bfj  the opposite case, when both interacting molecules are
that the minimal side-by-side distance between two identicaleakly twisted k,€,<27, u=1,2), the direction of the
molecules is independent on the molecular lergtindeed,  short axes strongly depends on different parameters of both
when the molecules are identical, the loops of the first onénolecules, such as molecular length.
penetrate deep into the alcoves of the second one, and the Let us consider the practically important case of the bi-
molecules may contact irrespective of the position of thenary mixture ¢=2), where the first component is a weakly
molecular “ends.” At the same time, dissimilar molecules dotwisted cholesterifsee Fig. 8)] having length¢ ., diameter
not dock very well, and the minimal distance between thenof the tubed., equal semiaxes,=o.=0, and helicityk
may depend on the length of each molecule. Then the folsatisfying the following constraint:

Using Egs.(44) and (45 one can estimate the relation
202 /J202

031704-8



ANALYTICAL DESCRIPTION FOR THE CHIRAL . .. PHYSICAL REVIEW E 67, 031704 (2003

7l . <k<2ml{, (49

and the second component is an achiral nematie Fig.
3(c)], having lengthf,,, diameter of the tubel,, and zero
semiaxesr,= o.=0 . One notes that in the casg= o, the

¢ parametefsee Eq(26)] does not characterize the molecu-
lar shape and describes only the turn of the whole molecule
around its principal axi®. Therefore, it happens to be the
only parameter that determines the direction of the short axes
b and c of a chiral molecule. Whether a chiral molecule
satisfying Eq.(48) couples with a similar chiral molecule or
with an achiral one, the correct choice of its short axes cor-
responds to the value= /2. Then the minimal side-by- (a) (b)
side distance between a chiral molecule and an achiral one is

achieved when the axisof a chiral molecule is collinear to FIG. 7. Two identical right-handed moleculéa) penetrate
corresponds to Fig.(&). Performing calculations presented axes, whereas an achiral molecule penetrates deeper into the same
in Appendix C, one obtains the following expressions for thechiral molecule(b) having left-handed turn.
rotational angley in the casey=0: (51) and(52) is opposite to the sign of the steric part in Eqgs.
7 (34) and (35). Indeed, the first derivative of the minimal
in=\/d%— 2sinz(— + ) . : "
Emin o 2|70 with respect to the rotational angke is positive [see Eq.
(50)], whereas the first derivative of the minimal side-by-side
gr,nin: O'E
ample, two identical right-handed molecul&sg. 7(a)] pen-
where the parametet is the minimal length {. or ¢,) and  etrate deeper into each other having a right-handed turn be-
tions presented in Appendix D and taking into account Eqpenetrates deeper into the same chiral molekig. 7(b)]
(24), one obtains in suppositio(27) the foIIowing expres- having a left-handed turn. This geometrical fact may lead to
describe the chiral coupling of chiral and achiral moleculednd section.
having the same lengti (= €,,=¢): Taking into account Eq(25) and using calculations pre-

the r,. vector connecting molecular centers. This situationdeeper into each other having right-handed turn between their long
minimal distance and its first derivative with respect to the
co{%)‘, (49) side-by-side distance between chiral and achiral molecules
€|  [ke ke distance between two identical chiral molecules with respect
sm(?)’/ \/d2_023|n2<7>: (50 to the same angle is negatiysee Eq.32)]. Thus, for ex-
d=(d.+d,)/2 is the average diameter. Performing calcula-tween their long axes, whereas an achiral molecule
sions for the chiral Coeff|c|ent§1 (ng and M1 (ny» Which the helical sense inversion, which is discussed in the follow-
sented in Appendix D, one obtains in suppositi@7) the

1 following expressmns for the achiral coefflc:lenﬂ% ,
3212 yqh— _ 4 (nc)
Iing/d*= ﬁkBTgmmgmm/d M3%, . 3522, andM302, in the casef,=(:
1 o 2 4
a5 07 (5, TR
1024 d fmln 202 /d3 57 J € d d 53
d \4 oo 1536 ° Emin d+o/ |’ (53
- (m cog k€), (51)
5 3 d 4 d |4
1 M292 /q3= | —
Mo/ d*= = g OKgT&fnémn/ d* Moo/ d"= 35727 ( ) [(gm,n) aro) |1 &Y
1051TJ (0' Z(kd) W ( )4
~2048™° 5o (€\%( d\? d |2
fimi Iyl d®= J( ) [( ) +3 —) . (59
4 7680 Emin d+o
+3 m cogkft), (52
. . . . . 5 ¢ 3 d 2 2
where first terms describe the steric part of the chiral inter- M202 /¢5=_""__j ( ) [( ) _ } (56)
action and the second terms describe the dispersion part. One M2ino) 1536"° Emin d+o/) |’

can see that Eq$51) and (52) describing chiral interaction

of chiral and achiral molecules are analogous to the corre-

sponding expression&4) and (35) for two identical chiral ~ which are analogous to the corresponding expres<idfis-
molecules. Nevertheless, the sign of the steric part in Eqg47) for two identical chiral molecules.
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IV. HELICAL TWISTING POWER AND HELICAL SENSE
INVERSIONS

A. Helical sense inversion with temperature variation

For simplicity, let us consider the case of pure one-

component cholestericrE1). One can distinguish at least

PHYSICAL REVIEW E 67, 031704 (2003

minimal distanceé(i)=¢(k,o,¢; ) between two identical
quasiuniaxial molecules in the parallel side-by-side orienta-
tion numberi (see Table )l and its derivative &' (i)
=¢'(k,o,¢; ) with respect to the angle between the long
molecular axes are determined by E&l) and(32), respec-
tively, whereo,= o.=0c. Substitutinge= /2 into Table |,

two reasons for the helical sense inversion with the tempergsne “obtains the only two independent odd orientations for

ture variation. The first reason is the competition between th
dispersion interaction and the steric effects. For simplicity
let us first consider the system of similar quasiuniaxial mol-

ecules ,=0.). As it was already noticed in Sec. lll, the

correct choice of the molecular short directions in the cas

o,= o corresponds to the parameter= /2. The coeffi-
cientsM 3% and M3% [see Eqs(45) and (47)] are equal to
zero[38], and Eqs(34), (35) for the chiral coefficients?
and M?'2 do not contain the terms with the index—*"
SubstitutingM 2= 0 into Eg.(3) and solving Eq(1), one
obtains for the biaxial order paramete=0. Therefore the
coefficientMi12 [see Eq(5)] does not influence the pseudo-
scalark,. Substituting Eq.(34) for the resting coefficient
J2*2into Eq.(5) for the pseudoscalds, and Eq.(46) for the
coefficientd3*? into Eq. (6) for the twist elastic constari.,
one obtains from Eq(4) the following expression for the
helical wave numbeg in the case of quasiuniaxial molecules

(op=070):
(57)

whereqs; andgg;s, are the steric and dispersion contribu-
tions to the helical wave number, respectively,

7

0= 0stert Aisp>

3¢ (1) E(L)+E(2)€(2)
d{&2(1)+¢2(2)}

64 9KgT
Oster=— 5 JO

(58
Qaisp=Co[ 1 — A sin(k€ + x)], (59
where
2 S:.(1,2)
—— 2] (ka3 4,1
o 577(4’ ) (ke e (D) +E342)) (60
oo VCao(12}+{Sio(12}* 61

S31(1,2)

The parameterg, Cf, ,(1,2), andSf, ,(1,2) are determined,
respectively by the following expressions:

ot sao 12 )
x=arc aﬁ—ﬁ,o(l,Z) ,

CK n(1,2=CK (k&(1))—CK (kE(2)),

S n(1,2=SK (ké(L1)— S, o(kE(2)), (63

and where the function§; ;(x), C34(x), and S; o(x) are
determined by Eqs(39), (40), and (41) respectively. The

fvo identical quasiuniaxial moleculesp; =0 and ¢,

/2. The steric contributiong,., derives from the packing

entropy. The constantkg/J, in Eq. (58) may be approxi-

mated in the Parsons approd@g,33 by the following ex-
ression:

In(1—®
e _0.005 74 L2l
TNl

a8 -4 -4
3, (a) (£ 4D +E )],

(64)

which follows from Eq.(44), where the constariz*? is ap-
proximately equal to 4.94Ty, /p according to the standard
Maier-Saupe theory[35], and where the densityp
~4d/(d?*¢) is determined by the volume fractiok and
molecular dimensiong andd.

One notes from Eq58) that the steric contributionge,
to the helical wave number is positiysince¢’ is negative.
Thus, the steric effects lead to the same handedness of the
liquid crystal as its molecules. At the same time, the disper-
sion termdgs, [See Eq.(59)] oscillates with the increasing
molecular lengtiY about the negative valwg,. The relative
amplitude of these oscillations depends on the molecular
chirality, which is determined by parametdeand o. From
Egs. (39)-(41) for the functions S3,(x), Cj4(x), and
S;o(X), it follows that the valueqq is finite for k=0,
whereas the relative amplitude of oscillatiahgliverges for
k=0. Strictly speaking, Eq59) for the dispersion contribu-
tion to the helical wave numbeyy;s, is incorrect fork=0,
since we used the assumpti(@¥). Nevertheless, one can see
from Eq. (61) the tendency of the amplitud® to arise for
small k. This tendency is obliged to the dominant effect of
the molecular ends on the dispersion interaction of the
weakly twisted moleculesk{ ~2). In this case, the rela-
tive amplitude of oscillationd essentially exceeds unity. On
the contrary, for intensively twisted moleculdsd~27) the
effect of the molecular ends is comparable to the effect of the
total molecular chirality, and the amplitudehas an order of
unity. This situation is demonstrated in Fig. 8, where the
dispersion contribution to the helical wave numiogys, is
presented as a function of the paramdterin the casef/d
=5 ando/d=0.1,0.2. One can separate two limit regimes in
Fig. 8. The first onéleft side of Fig. 8 realizes for weakly
twisted molecules. In this case the oscillations of the disper-
sion term are much larger than the average value, and the
dispersion contribution to the helical wave numbgj;, may
be positive or negative, depending on vallkeand ¢. The
second regiméright side of Fig. 8 realizes for intensively
twisted molecules. In this case the oscillations are of the
same order as the average value, and the dispersion term has
the dominant negative sign with small positive “islands.”
These two regimes will be considered separately in Secs.
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FIG. 8. Dispersion contribution to the helical wave numbgt,
as a function of the molecular parametet in the casef/d=5, FIG. 10. Helical wave numbegas a function of the temperature
op=0=0: (1) o/d=0.1; (2) ¢/d=0.2. The behavior is different in the case®=0.6, Jo/kg=1300 K, ¢/d=5, o,/d=0.4, o /d
for small and large values dfd. =0.2, kd=5 and (1) ¢=0.33; (2) ¢=0.39; (3) ¢=0.41; (4) ¢

=1.18.
IVB and IV C. Here we stress that the dispersion contribu- ] ]
tion to the helical wave numbeyy,s, may be negative irre- E0S-(58), (59), and(65) one can estimate the energetic con-
spective of the regime. Thus, the steric and dispersion cortantJo for the investigated molecules. Substituting the con-
tributions may have opposite signs. Since the steridtantJo into Eq.(64), one can estimate the temperature of
contribution g, is proportional to temperatur& and the the nematic-isotropic phase transitidg, . Similarly, know-
dispersion contributiomy;s, is independent on temperature ing the temperature of the nematic-isotropic phase transition
T, the helical sense inversion with the temperature variatiof ni ON€ can estimate the temperature of the helical sense
happens, when the dispersion and the steric contributiongversionT,, (in the caseTy,>Ti,,).
equal each other. The corresponding temperature dependenceln the case of biaxial moleculesr(+# o), the other pos-
of the helical wave numbeg is presented in Fig. 9 fo sibility exists for the helical sense inversion. Indeed, as it
=0.6, Jo/kg=1000 K, ¢/d=5, ¢/d=0.3, and four differ- follows from Fig. 5, the coefficienti?*? describing chiral
ent values of the paramet&d. One obtains the following interaction between the long molecular axes, and the coeffi-
relation from Eqs(57)—(59): cient M2'? describing chiral interaction between the long
axis of the first molecule and the short axes of the second
molecule, may have opposite signs. Since the relation of the
order parameter®/S is usually small, but grows with the
increasing temperatuffesee Fig. )], the helical sense in-
whereT;,, is the temperature of the helical sense inversiorversion with the temperature variation is possifdee Egs.
in the system of identical quasiuniaxial molecules. Knowing(4) and(5)], when the coefficientd?'> andM3* have oppo-
the temperature of the helical sense inversigp and using  site signs, and the absolute value of the coefficiit is

essentially smaller than the absolute value of the coefficient

T Oster
= , 65
Tinv qdisp ( )

. M2, Therefore, a good possibility of the helical sense in-
81 version occurs when the parametetisand o of the chiral
10} molecule are essentially inequ@ee curves 3 and 6 in Fig.
sl 3 5). The corresponding temperature dependence of the helical
o wave numberg, calculated using Eqg4)—(6), is presented
,,g 0 in Fig. 10 for ®=0.6, Jy/kg=1300 K, ¢/d=5, o,/d
- sl =0.4, 0,/d=0.2, kd=5, and four different values of pa-

2 rametere. Instead of Eq.65), one obtains the following
10r- constraint for the helical sense inversion in the case of biax-
A5l 1 ial molecules:

20 7 . . . . I Tiny) == DIS(Tin, )MTATin,), (66)
0.6 0.7 0.8 0.9 1.0 o 012 1o . )
/T, where the coefficientd?™= and M1~ are linear functions of

temperatureT [see EQs.(34) and (35)], and the function

FIG. 9. Helical wave numbeg as a function of the temperature D/S(T) is determined by the recurrent E(l). One notes
in the case®=0.6, J,/kg=1000 K, ¢/d=5, o,/d=0,/d=0.3  from Fig. 10 that the temperature dependence of the helical
and (1) kd=2.3; (2) kd=2.34; (3) kd=2.36; (4) kd=2.4. wave numbeiq always has the increasing branch. As in the
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case of quasiuniaxial molecules, it corresponds to the grow-
ing positive steric contribution to the coefficiedf'?. If the
dispersion contribution to the coefficied#*? (which is inde-
pendent on temperature 15 negative, the helical sense in-
version from negative to positive sign may hapemrves 2,

3). At the same time, dependenqgéT) may also have the
decreasing high-temperature branch, if the coefficMit?

is negative (curves 1-3 Indeed, the growing relation
D/S(T) may overbear the steric contribution to coefficient
J32_ Then the helical sense inversion from positive to nega-
tive sign may happefcurves 2, 3. If the absolute value of
the coefficientM2'? is essentially larger than the absolute
value of the coefficienﬂflz, the whole curveg(T) appears

to be below zerdcurve 1. If the coefficientM 2'%is positive,

the dependencg(T) has the only increasing brancburve Vd

4), and the helical sense inversion from positive to negative g 11. schematic illustration of the free enefggs a function
sign is impossible. Finally, one notes that one or both hypoyt the average axial ratié/d of spiral pieces.

thetical points of inversion may appear beyond the range of

the nematic phase. the global minimum, the free energy of the system has a set
of the local minima with respect to the axial ratibd. Then
B. Helical sense inversion with variation of molecular length the process of denaturatidor renaturation may be inter-

Many biologically important polymers, such as polypep-Preted as a sequence of phase transitions, when the free en-
tides, are known to suffer the spiral-coil transition that is€rgy of the system changes by little steps corresponding to
usually called the process of denaturat{@8]. The native the discrete change in the average axial rdtid. Let us
molecule of polypeptide is usually a long/d~100) rod- expand the hypothetical free ener§y¢,d,k,o) in Taylor
like and highly intensive helixd~2). For simplicity let series with respect to the small parametéd and collect the
us consider the case of pure one-component polypeptide (terms with the same power of the small paramelt:
=1) consisting of quasiuniaxial moleculesy=o). Ac-
cording to Eqs(58)—(61), the dispersion contribution to the F(¢,dka)=> >, F oy (k€ kd)(a/d)(d/€)7. (67)
helical wave number, which is proportional td/¢)?, domi- a vy
nates for long molecules over the steric contribution which is
proportional to ¢/¢)3. On the other hand, molecules with Let the first few coefficient& (k¢ ,kd) in the sum(67) be
highly intensive helix obey the regime that is presented inndependent of the parametekd( till the coefficient
the right side of Fig. 8, when the dispersion contribution toF (k¢ ,kd), which is a finite periodical function of the pa-
the helical wave number is negative almost for any molecurameter k¢). Then in the supposition/d<1, d/¢<1 one
lar length(excluding the small “islands). In the process of obtains the following approximate constraint for the global
denaturation, molecules of polypeptides are known to spliminimum of the functionF(¢,d,k,o) with respect to the
into small (¢/d<5) spiral pieces, which are interrupted by axial ratio of a spiral piecé/d [for the constant parameters
coiled (achiral and flexiblg fragments. When the spiral (kd) ando/d]:
pieces become small enough, the steric contribution to the
helical wave number may dominate. Since the steric contri- m
bution is positive, helical sense inversion may occur. 2 (ald)* X yF,,(d/e)7*1=0. (68)

To obtain the constraint for helical sense inversion during *=0 (e
denaturation, let us estimate the average axial rétib of
spiral pieces. Let the free energy of the system depend o
three internal parameters: the density of the spiral pigces
(with the respect to the total density of the spiral and coiled
pieces, the average elongation of the spiral pieééd, and
the orientational distribution function of the spiral pieces a(ke)
f(cos#). The equilibrium values of all the internal param-
eters can by obtained by independent minimization of thdn addition to the standard internal energy,; and orienta-
free energyF with respect to these parameters. A schematidional entropyF,,, the free energy of the systefncontains
illustration of the hypothetical free ener@yas a function of  also the energy of the hydrogen borfegis [18] that stabilize
the average axial ratié/d is presented in Fig. 11. For any the molecular spiral and various forcing fields,; provided
set of external parameters, it has the global minimum correby the external actionfemperature, chemical, etavhich,
sponding to the equilibrium valu&@'d. The spiral pieces split on the contrary, denature the hydrogen bonds:
into smaller ones or combine into bigger ones with the varia-
tion of the external parameters. Suppose that, in addition to F=Fint+FotFutFext- (70)

F/kgT)

n
Inikewise, one obtains the following constraint for the local

minima in the vicinity of the global one:

Fon(k€)=0. (69)
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It is clear that the energy of the hydrogen bortgs and
external actiorF.,; do not depend explicitly on the param-

1.0}
etero/d. Indeed, they are simply proportional to the number
of screws in a spiral piece~¢/d) and the number of spiral
pieces (- p): o5k 4
= 3
Fu+Fex—pf/d. (77 s

0.0
The orientational entrop¥,, is also independent explicitly \_\___.,.,*,r—-’*
2

of the parametes/d, since it does not contain any molecu-

lar parameters. Then the only term in the free endtgye- 0.5}

pending explicitly on the parametet/d is the internal en-

ergy Fint: 5 10 15 20
Id

Fine=—2p?3(¢,d k,0)S" (72 . .

FIG. 12. Helical wave numbeg as a function of the average
axial ratio€¢/d of spiral pieces in the casé=1, J,/kg=6000 K,
T=300 K, ¢/d=0.3 and(1) kd=3.75; (2) kd=4; (3) kd=4.25;

(4) kd=5.5. During denaturation it changes by steps denoted by
square bars.

Expanding the moment of the coupling constant
J3%4¢,d,k, o) in the Taylor series with respect to the small
parametew/d and collecting the terms with the same power
of the small parametedt/¢, as is presented in Appendix B,
one obtains the following expression for the largest oscillatwhere functionsE*(x) and Q(x) are determined by Egs.
ing term in the sun67): (42) and(43), respectively. Differentiating Ed74) with re-
spect to parameteik{), one obtains from Eq69) the fol-

Fosd €,d,k,0)~F, _»(k€,kd)(a/d)?(€/d)2, (73 lowing constraint for the local minima of the free enefgin
’ the vicinity of the global one:

where
k€ ,=m7—(k,o)+2mn, n=0,1,2.... (77
5 B 5
Fa-2~—(kd)*C3 (1,2)sin(k€) — S3 (1,2 cog ke)}(74) Here functiony(k, o) is determined by the following expres-
sion:
where parameter§3 (1,2) andS;3 ,(1,2) are determined by (1.2
Egs. (63). Here we present the explicit expressions for the Y(k,o)= arctanL. (78
functionsC3 ,(x) ands; o(x) which are calculated in Appen- 2o(1,2)
dix E: The functiony(k, o) is equal torr/2 in the casd=0, mono-
tonically decreases with the increasing paramletand tends
r to zero with the parametértending to infinity. In the case of
2cost . X . :
o(X) 768f dtf dr——— RN intensively twisted molecules kfi~27) the function
[re+t7] #(k,0) in Eq.(77) may be neglected, and the average length
1 1 5 11 of the spiral pieced satisfies the constrait¢ =7+ 2mn.
= —x"1o —x 24 _x 34 x4 This result may also be obtained from the common sense.
60 60 6 2 Indeed, the molecules, consisting of the integer number of
5. loops, have in the nearest orientatitmb,c} (see Table )
+14x 5+ 14x° —exp — x)+ |( X), the maximal number of contacts per unity of their length.
4 Substituting Eq(77) into Eq.(59), one obtains the following
(75) expression for the dispersion contribution to the helical wave
number:
S8 (x)=768 f dt f dr— ot qomg| 1 CE0L2Si12 ~ CE(1.2S(12
) 2 215 disp— Yo| +—
o Jx o [rf+t7] P S 1(1,2V{S34(1,212+{C3(1,2}2
1 11 5 (79
| - y—2, 4 6| _E—
a 60X + 2 x 7+ 14x 4E (%) which is negative for the intensively twisted molecules.
L Thus, the steric and dispersion contributions to the helical

wave number have opposite signs. Helical sense inversion
may be observed in the process of denaturation, since the
dispersion contribution dominates for the long spiral pieces,
i ixfg_ 7—9x 5 —Q(x) (76) and the steric contribution dominates for the short ones. Sub-
stituting Eqgs.(58) and (79) into Eq. (57), one obtains the

60 6

5 5 1
+|=x"t+ = x3+14x5) E* (X)+ 52X !
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total helical wave numbeg, which is presented in Fig. 12 as
a function of the axial ratiof/d in the cased=1 [39], | 4
Jo/kg=6000 K, T=300 K, o/d=0.3 and four different val- 20 3
ues of the parametded. The points corresponding to the r
constraint(77) are presented in Fig. 12 by the square bars. 10+
One should, however, stress, that the consti&@int was ob- I 2
tained in the supposition that the molecule may be broken
into pieces in an arbitrary place. The real places of the tear
may only correspond to the positions of the hydrogen bonds
which repeat 3.6 times a loop as the avergf§§. Thus, the
real places of the tear lie in the vicinity¢ ,~ = 0.14k of the
places denoted by Ed77). Since functionsC‘r‘n,n(x) and -20
S'r‘n’n(x) rapidly decrease with the increasing variaklgsee -
Egs. (39—(41) and (75) and (76)], the dispersion contribu- 0.0 0'2 0'4 0'6 0'8 1'0
tion to the helical wave numbeyy;s, also decreases with the ' ' Con ' '
increasing parametérd [see Eqs(79) and(60)]. Therefore, ¢
the point of helical sense inversion moves in Fig. 12 towards FIG. 13. Helical wave numbaey as a function of the concentra-
the larger axial ratio//d with the increasing paramet&d  tion of the chiral component in the mixture of chiral and achiral
(see curves 193Beginning with some critical valuled, the =~ molecules in the caseb=0.6, Jy/kg=800 K, T=Ty,—5 K,
dispersion contribution to the helical wave numbmgys,  €c/dc=5, 0/d:=0.3, dy/d.=1.2 andké;=5.1 (1); 5.3 (2); 5.5
does not overbear the steric contributiqg,, for any ratio  (3); 5.7(4); 5.9(5).
€/d, and helical sense inversion is not observed during de- . . . . .
naturation of such moleculesee curve 4 in Fig. 12 The action of an athral molecule with a Chll’.a| one—into EB).
decrease of the absolute value of the helical wave number fOr the mean-field energy e, one obtains from the recur-
with the molecular elongatiofi/d has a simple explanation. €Nt EGs(1) the values of the order paramet&sandD , .
Indeed, chirality of the nematic phase arises from chirality of VeXt, SUbSt',}g“ng Eqs(34) and (39 for the coefficients
the effective intermolecular potential. It is clear that the longJi(ec) @dM1(ce)—describing the chiral interaction of iden-
molecular “ends” attract each other. This makes the cholestical Ch”?|2m0|eCU|9232—and Eq$51) and(52) for the coef-
teric distortion less preferable. ficients 35, and M —describing the chiral interaction
of an achiral molecule with a chiral one—into E&), one
obtains the value of the pseudoscadlar Finally, substituting
Eqs. (46) and (47) for the coefficientsJ5( ,, and M%)Z )
. ) ) (u=n,c) and Eqgs.(55 and (56) for the coefficients]zié;
Let us consider the case of the binary mixture=R),  5pqg M3%, into Eq. (6), one obtains the value of the twist
where the first component is a weakly twisted cholesterig,astic

. : . constark,. The helical wave numbey of the binary
[see Fig. &)] having equal semiaxesr(,=o.=0) and sat-

L=oEE \ X nematic-cholesteric mixture, calculated using &, is pre-
isfying the constrain{48), and the second component is an senteq in Fig. 13 as a function of the mutual concentration of

achiral nematidsee Fig. 8)]. As it was discussed in Sec. hq components in the cas®=0.6, J,/ks=800 K, T
11, the steric contribution to the chiral interaction of a chiral =Ty —5K, €./d,=5, ¢/d.=0.3 anéd 7d —1.2 Dif,fer-
» VelMe ' c -9, n/0O¢ L.

molecule with an achiral one, and the steric contribution to

he chiral i . f entical chiral molecules h ent curves in Fig. 13 correspond to different values of the
the chiral interaction of two identical chiral molecules have 5 o meterke., describing helicity of chiral molecules.

Changing the value of the paramekgt,, one obtains nega-

. ) P ; . five or positive shift of the previous dependence, either the
influence of the dispersion interaction on the helical wave,pica| nart of the dispersion interaction is negative or posi-
number. Indeed, weakly twisted molecules constituting the; e ‘variations of the helical wave number with the concen-

pure onejcomponent cholestenc .obey the_ regime in the le ation of components in the common cagg# o are rather
side of Fig. 8, when the dispersion contribution may have

. ; ) . complicated. Nevertheless, the helical sense inversions are
different signs depend_lng on th_e choice of molecular paramg possible due to the steric effects.
eters. Choosing the intermediate parameters, one obtains
zero dispersion contribution to the helical wave number. The
same situation may be achieved in the case of binary
nematic-cholesteric mixture. Then only the steric effects may |n this paper we presented a simple description for the
be responsible for helical sense inversion with the variatiorcorrelation between molecules constituting a chiral nematic
of the mutual concentration of components. Substituting Eqsicholesteri¢ phase. We suggested a model of chiral molecule
(44) and (45) for the CoefficientSJg?ﬁM) and Mg?ﬁﬂ) (#  that involves only five parameters having transparent geo-
=n,c)—describing the achiral interaction of identical mol- metrical meaning: the axial ratié/d, the intensity of the
ecules(an achiral molecule with an achiral one or a chiral helix kd, semiaxes of the helix,/d, o./d and the param-
molecule with a chiral one—and Eqs(53) and(54) for the  eter ¢ that determines the turn of the molecular center
coefficientsJg s,y and Mgz, —describing the achiral inter- around the long axia with respect to the short axis In the

10*qd
o

C. Helical sense inversion in nematic-cholesteric mixtures with
variation of mutual concentration of components

V. CONCLUSION
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case of quasiuniaxial moleculeshen oy= o .=0) we have ner_natic phas_e that is opppsite to the rotation providing the
only three independent parameters of the molecifié; kd, ~ optimal packing of the primary molecular axes, the other

ando/d. In addition to these geometrical parameters, we us@€lical sense inversion may happen at some temperesteiee

only the following variable values: the volume fraction of the Fig- 10- _ _ _ o
molecules ®, temperatureT, and (in the case of the Helical sense inversions with the variation of temperature

T-component mixturethe relative concentration of its com- were observed _experlmentally by d|ffe_rent auth{?s-6].
_ Using our analytical scheme presented in Sec. IV A, one can,
ponentsn, (u=1,...,7—1).

We obtained the analvtical exoression for the helical Wavein particular, estimate whether the molecules of the investi-
Y b ated liquid crystal are biaxial or uniaxial. Indeed, if the

numberq in terms of these parameters. As it was predicted i ependencey(T) is linear (see Fig. 9, the molecules are

Refs.[7—11], this expression appeared to consist of two CONniaxial according to our scheme. Otherwisee Fig. 10

tributions [in the_ case pf the pure quas_iuniaxial_ cholestericihe molecules possess essential shape biaxiality.
see Eq_(57)], Whlc_h derive from the steric repulsion and the  one notes from Eqs(58) and (59)—(61) that the steric
dispersion attraction. _ contribution to the helical wave numbeg, is inversely
The steric contribution to the helical wave numligte:  proportional to the third power of the molecular axial ratio
[see Eq(58)] is mostly managed by the minimal distar&@  ¢/d, whereas the dispersion contributiog;s, is inversely
between molecules. If both interacting molecules wereproportional to the second power of this ratio. Thus, the
achiral, the minimal distance between them would corresteric contribution may dominate for the short molecules,
spond to the parallel side-by-side orientation. At the sameavhereas the dispersion contribution may dominate for the
time, if at least one of the molecules is chiral, the minimallong ones. Taking this into account, one may suppose helical
distance between them is achieved when the apdgletween sense inversion in the process of denaturation of some
their long axes is equal to a nonzero value. To analyze whicholypeptides, if the steric and dispersion contributions have
turn (left or right) corresponds to the decreasing minimal Opposite signs. Indeed, the long native molecules are known
distance¢,,, we calculated its derivativé;, with respect to  to0 splitinto small chiral pieces in the_process of Qenaturation
the angley in the parallel side-by-side orientatisee Eqs. [18]- In Sec. IVB we suggested a simple analytical scheme
(32) and(50)]. It was established that, for example, two iden-0f denaturation, which resulted in the diagram presented in
tical right-handed molecules dock better in the right-handedg- 12.
orientation[see Fig. 7a)], whereas a right-handed molecule ~ Finally, one should stress that very long moleculésd(
and an achiral one dock better in the left-handed orientatiof” 1), such as tobacco mosaic virl@6], usually constitute
[see Fig. To)]. We demonstrate in Sec. IV C that the differ- the achiral nematic phase because the long “ends” of one
ence between steric packing of identical and dissimilar molmolecule attract the “ends” of the other one and the parallel
ecules may be responsible for helical sense inversions ifide-by-side orientation of such molecules appears to be the
nematic-cholesteric mixtures with the change in the mutuamost probable. This effect is confirmed by Fig. 12, where the
concentration of the componerfsee Fig. 1% This resultis  absolute value of the helical wave numbgrrapidly de-

confirmed by numerous experimental dft4—17. creases with the increasing molecular length.
The dispersion contribution to the helical wave number
daisp [S€€ Eqs(59)—(61)] is provided by the attractive forces ACKNOWLEDGMENTS

between molecules. The dispersion attraction of the two ) ] ] )
achiral moleculed) ;, is known to be maximal in the parallel _ ThiS project was supported by the Russian Foundation for
side-by-side orientation. At the same time, if at least one ofpasic Research. Part of this work was done during the au-
the molecules is chiral, the maximal dispersion attractiof0r's stay at the University of Strathclyde, where he was
may correspond to the small deviation from the parallel sideSUPPorted by Grant No. EPSRC GR/R71023/01. The author
by-side orientation. This deviation may be opposite to thdS 9grateful to M.A. Osipov for setting the problem and for
turn providing the minimal distance between molecules. WeUmerous stimulating discussions, A.R. Khokhlov for tech-
demonstrated that competition between the dispersion forcédc@l support and assistance, K.B. Zeldovich for helping with
and the steric effects may lead to helical sense inversion witilustrations, and A.J. Davidson for help.
the change of the temperature. Indeed, according tq38).
the steric contribution to the helical wave numligk,, is APPENDIX A: MINIMAL DISTANCE BETWEEN TWO
proportional to temperaturg whereas the dispersion contri- IDENTICAL CHIRAL MOLECULES
bution qgs, is independent on temperatufdsee Eqg59)—
(61)]. If these contributions have opposite signs, helical
sense inversion may happen at some tempergeeFigs. 9
and 10. Let us first consider the two identical chiral molecules in
The other possibility for helical sense inversion exists ifthe side-by-side orientation presented in Fi¢c)1A sche-
the molecules are essentially biaxial. According to the stanmatic illustration of the contacting identical molecules in the
dard schemésee Eq.1)], the relationD/S between the bi- casea;TTay, b11T1b,, ¢1T7C 11Uy, ¢= /2 is presented in
axial and primary order parameters increases with the inFig. 14. In correspondence with the molecular model pre-
creasing temperatuie[see Fig. €)]. If the optimal packing sented in Sec. lll, the coordinates,(y,,z,) of an arbitrary
of the short molecular axes corresponds to the rotation of thiayert, of the first molecule and the coordinates (y»,z,)

1. Minimal distance between two identical chiral molecules in
side-by-side orientation
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16 ¢~ (radians)
T
T 14 3
V 1.2 ? ®)
1.0 ' 1 'l ' 1
-3.14 -1.57 0.00 1.57 3.14
¢ (radians)
FIG. 15. Functions$™/d(¢ ") (a) and&, ./d(¢ ) (b) in the case
old=o,/d=0./d=0.3 andkd=1 (1), kd=3 (2), kd=5 (3).

()

&n

FIG. 14. Schematic illustration of the contacting identical chiral

where the down sign corresponds to the case<<e¢~
+2m7n<0 (n is integey, the upper sign corresponds to the
case K¢~ +27n<gr, and in the case = zn the sign in
Egs.(A4) and(A5) is determined by the parameter : the
down sign corresponds to the caser/2< ¢’ +27n<m/2

; i ; ; and the upper sign corresponds to the cat<qe*t+2mn
of an arbitrary layet, of the second molecule in this orien- pper sig Sponds : ¢
tation are, respectively, equal to <3mw/2. The corresponding minimal distance between two
molecules and its first and second derivatives with respect to
the angley in the casey=0 are determined then by the

molecules in side-by-side orientation:a; 1 Tay,
CiTTCT TUL, ¢=m/2.

blTTbZl

X(7,t1) opCOg Kty + ¢1)COL ¥/2) — 4 SIN( v/2) following expressions:

yily,ty) | = osin(kt; +¢q) ,

Z1(y,1q) opcog kty + ¢q)Sin(y/2) +t,cog y/2) £(0)= \/dz—(2t*)2+ 20 sinkt™+¢7)|, (AB)

(A1)
£L(0)=—Kkopocod(kt™ +¢7), (A7)

Xz( ’y,tz) choiktz-l- QDz)COi 7/2)+t25|n( ’)//2)
ya(v.la) | = F12+ oSNkt + ¢2) : £4(0)=—[£2(0) +(t")2~ (") + opcod
Zz( '}/,tz) —O'bCOS(kt2+ (,Dz)s|n( ’}//2)+t200$ ’)//2()A2) X(kt7+ @7)]/\/m, (A8)

wheret ™ is the root of Eq(A5) [see Figs. 1&) and 16a)],

where both parametets andt, range from—¢/2 to €/2 and i o 1
andt® is the minimum in the absolute value root of Eq.

both parameterg,; and¢, may be equal t, ¢+ 7, — ¢ or
— ¢+ depending on the choice of the odd orientation of

molecules 1 and 2see Fig. 4. Penetration of a layer; of 03l @ 2
the first molecule into a layer, of the second molecule is
forbidden. The minimal distance between layers is the diam- 0.2 3
eter of the tubed. According to Egs.(Al) and (A2), the -
corresponding distance between the molecular centers O ]
£ y.t1,1,) satisfies the following constraint: 01r
2=[E(yt™ t7) +20sin(kt™ + ¢~ )cogkt" + o)1 00 . .
+[2apsin(kt™ + @7 )sin(kt* + ¢ *)cog y/2) 0.00 °'/2d5 0.0
G,
—2t*sin(y/2)]?+[2opcogkt™ + ¢ )cogktt + ™) 18l
X sin( y/2) — 2t ~cog y/2) 13, (A3) 3
‘S 1.6 | (b)
wheret™=(t,%1,)/2, ¢*=(¢,+¢1)/2 . The total set of w? 1al )
the parameterg™ is presented in Table I. The minimal dis- '
tance between molecule&s(y) corresponds to the maximal 12} ]
value &(y,t7,t%). Maximizing &(v,t7,t*) in Eq. (A3)
separately by~ andt™® in the casey=0, one obtains 1.0
0.00 0.25 0.50
cogktt+ot)==1, (A4) s/d
FIG. 16. Functiong™/d(a/d) (a) and &, ./d(a/d) (b) in the
kocogkt™ + ¢ )Jd?—(2t7)?==*2t", (A5)  casep” =0 andkd=1 (1), kd=3 (2), kd=5 (3).
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(A4). One notes that the function and consequently the 2. Minimum distance between two identical chiral molecules
functions &, and &, depend only on parameter , whereas in end-to-end orientation

the functioné, depends on both parameters ande ™. One Next let us consider the two identical chiral molecules in
notes that the same expressidAg)—(A8) with the change the end-to-end orientation presented in Fi@) A schematic
0p— T, Te— 0y and o— o+ 7/2 determine the minimum illustration of the contacting molecules in the case

. . S y oy . a1 TTasTTugp, byTTh,, ci17¢C,, =0 is presented in Fig.
distancet;, and its derivativesy, , £, in the case presented in 117T.TThzg I:oézrdingtgyz i ,Tle)zof an arbitrzry layet, of the
Fig. 1(b). The reduced functions¢,c/d(¢) and first molecule and the coordinates,(y,,z,) of an arbitrary
&p c/d(o/d) are presented in Figs. & and 16b), respec- |ayert, of the second molecule in this orientation are, re-

tively. spectively, equal to
|
X1(a,ty) opcog Kty + ¢1)coq a/2) + asin(kty + ¢q)sin( al2)
Yi(a,ty) | = —opcogkty+ ¢@q)sin(al2) + osin(kt; +¢p)cog a/2) || (A9)
zy(a,ty) ty
Xo(a,ty) opcog kt, + @,)cog al2) — aSin(kt, + ¢,) Sin( @/2)
Yaola,ty) | =| opcogkt+ ¢y)sin(al2) + osin(kt,+ ¢,)cog al2) |, (A10)
Zy(a,ty) rpt+t;

where both parametets andt, range from—¢/2to¢/2 and  Eq. (A11) that the functioné,(«,t™,t") increases with the
both parameterg, ande, may be equal t@, ¢+, —@ Or  decreasing variablé”. On the other hand, the minimum
— ¢+ depending on the choice of the odd orientation ofpossible valug ™= —¢/2. Thus, maximization of the func-
molecules 1 and 2see Fig. 4. Penetration of a layet; of  tion £,(«,t™,t™) with the respect to the variabte gives
the first molecule into a layer, of the second molecule is
forbidden. The minimum distance between layers is the di- tT=—4/2. (A12)
ameter of the tube. According to Eqs(A9) and(A10), the
corresponding distance between the molecular centerkhe following maximization of the functiogy(«,t™,t*) in
&i(a,tq,t,) satisfies the following constraint: Eq. (A11) with respect to the variable™ (in supposition
op,=0) gives
2_ - i+ -2 i -y -
d?=[&y(at ™ tH) + 2t 12+ [20psin(kt™ + o) sin(kt* 4 ¢ *)=0. A1)

Xsin(kt™ + ¢ ")cog al2)+20.c09kt™ + ¢ )

) P ) o The corresponding minimum distance between two mol-
xsin(kt" +¢")sin(al2)]"+[2apcodkt + ¢ ™) ecules and its first and second derivatives with respect to the
X cog kt*+ ¢ )sin(al2) + 2o sinkt™ + ¢ ) gnglea in th_e casex=0 are determined then by the follow-

ing expressions:
x cogkt* + @) cog al2)]?, (A11)

£(0)=€+\Jd®—4o2sirP(k€/2— o),  (Al4)
wheret™=(t,%11)/2, ¢"=(¢,+ ¢1)/2 . The total set of
the parameterg™ is presented in Table I. It follows from £1(0)=—oposinke —2¢7)/[£40)—€], (A15)
§ E(0)=[~£2(0)+ 3 (o502 + 3 (op+02)

Xcogkl—2¢7)]/[£40)—¢£]. (Al16)

APPENDIX B: DISPERSION INTERACTION OF TWO
IDENTICAL CHIRAL MOLECULES

1. Dispersion interaction of two identical chiral molecules in
side-by-side orientation

FIG. 17. Schematic illustration of the contacting identical chiral ~ Let us first estimate the dispersion interaction of the two
molecules in end-to-end orientationg, T Ta,T Tuy,, byT1b,, identical chiral molecules in the side-by-side orientation,
G T1¢c, ¢=0. presented in Fig. (t). According to Eq.(28), the dispersion
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interaction of an arbitrary layer of the first molecule with  ing expressions for the dispersion interaction of the layers
an arbitrary layet, of the second molecule in this orienta- and its first and second derivatives with respect to the angle
tion is determined by the following expression: v in the casey=0:

Jod? Jod?*

, AU(rp t  tH~— —5————, B7)
[(r 1o+ Ay 2+ AX2+AZ2) B (

AUC(rlz,ti,t+)= -

(B1)

: . . . ) - op0c o T1Wp(t7,t7)
whereJ, is the constant having the dimension of energy. In AU(rp,t7,17)~96 5 Jod"— —= (B8)
correspondence with Eq$Al) and (A2), the parameters d [rt(2t7)7]

AXx¢, Ay, andAz. satisfy the following expressions:
) . , ()= (t7)?
{AUc(rlZ't ) fmor=6Jod (B9)

Ax.=—20psin(kt™ + ¢ )sin(kt™ + ¢ ") cog y/2) [r2,4(2t)2]*

+2t"sin(y/2), -
(AUt ) s — 4877 oo 2L
Aye=20sin(kt” +¢7)cogkt* +¢%), (B2 N N A e S
(B10)
Az.=—20,c08kt™ + ¢~ )cogkt" + ¢ )sin( y/2)
where
+ 2t coq y/2).
s Wy (t7,tH)=tTsirP(kt™ + ¢ )sin(2ktT +2¢™)
It follows from Eg.(B2) that the parameteky, is indepen- t- Kt 4 o )sin 2kt 4+ 20—
dent on the angles between the long molecular axes. One tcos(kt" +¢")sin(2kt ¢)
obtains, therefore, the following expressions for the first and (B1D
second derivatives of the interaction between layers with the o s B B .
respect to the angle: Wo(t7,t")=[(t")"+(t7)“]{1+cog2kt™ +2¢ " )cog 2kt
33,0 A+ AZ2] +2¢ )} —[(t7)?=(t7)*){cog 2kt +2¢7)
! — 0 — . —
AU(r ot ’t+):[(r12+Ay)Z:AXZ:AZ2]4’ (B3) +cog 2kt +2¢™ )1+t sin(2kt
C C C
+2¢7)sin(2ktT +2¢™). (B12)

n — 4\ " — s+
AU(r2, ) ={AUc(M12,tt ) }mon One notes from Eq$B7) and(B9) that the dispersion inter-
F{AUL(r 12,7t ) }oses (B4) actionAU(rq,,t7,t™) of the layers and the monotonic part
of its second derivativeAU[(r 15,t~,t )} mon With respect to
where the second derivativeU(r,,t,t*) consists of the the angley do not depend on the parametefd at zeroth

two parts that we conditionally call “monotonic” and “os- approximation and have exactly the same expressions as for
cillating” parts, achiral molecules. The total dispersion interaction of the two

molecules is determined by E(R9). In the case of the two
33,0 Ax2+AZ2]" :%cre:]t.ical molecules one can rewrite E9) in the following

AUZ(rp,t7 t1 = ,
e o 07+ A+ AZT ;
.
(B9 Ulz(rlz):Bf drf“ Ut (AU(r .t ),

0 0

12)odH[AXZ+ AZ2]"}2 (B13)

AUL(r 9,7t )} s — .

tale(ra: es= [(rio+ Ay +AXE+AZ]° where the angular brackets denote the even part of the cor-
(B6) responding expression with respect to both parameters

andt™. Substituting Eqs(B7) and(B9) into Eq.(B13), tak-

It will be proved below that the terfAUC(r12,t ,t ) }mon  ing into account the constraiie7) and generalizing all the

contains the largest monotonic function of the molecularexpressions for both cases presented in Figs), 1(c), one

elongationt/d, whereas the terfAU¢(rq,,t7,t")}oscCON-  obtains the following expressions for the total dispersion in-

tains the largest oscillating function of the same parameteteraction between two identical chiral molecules in the side-

Substituting Eq(B2) into Egs.(B1), (B3), (B5), (B6), then  by-side orientation and the monotonic part of its second de-

expanding them in the small parameteid= \Jo,o/d and rivative with respect to the corresponding rotational angle (

taking into account the only first nonzero tefmhich at the  or v) in the casg3=0 or y=0:

same time is not odd with respect to the chargge ¢+ 7

corresponding to the rotation of both molecules around their 37 0( d )55

long axesa; anda, by the angler), one obtains the follow- Upe~— g d (B14)

8 Olry, d’
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d\7/¢\3

—Jol —1| | =] .

0(r12) (d)

If the molecules satisfy constrai(27), the first three terms

U > B15

mon

in integral (25 may be neglected with the respect to the

fourth one. Indeed, according to Eq#6)—(A8) and (B15),
the fourth term in Eqg.(25 contains the maximalthird)
power of the large parametér/d and the minimakzeroth
power of the small parameter/d. Substituting Eq.(B15)

into the fourth term of Eq(25) and taking into account Egs.

(7), (15), and(30), one obtains Eqg44)— (47) for the coef-

F A 202 202 202 202
ficients 357, ) » MG(un) » I5(s0) @NAM3

At the same time, the first nonzero terms in functions

AUC(rlz,t* t™) and {AU/(rq,,t7,t7)},s are proportional
to (o/d)? [see Eqs(B8) and(B10)], as well as the function
&./d [see Eq(A7)]. Thus, both terms in the integré24), as
well as the largest oscillating term in E5), are propor-
tional to (o/d)2. Substituting Eqs(B8) and (B10) into Eq.
(B13), one obtains functiond /(r1,) and{U(r12)}esc. De-
fining the parameters krqi,, t=2kt™, andx=ké., inte-
grating the functions3,U . (r 1) andr2,{U%(r 1) }escWith re-

spect to the variable,, and taking into account constraint

(27), one obtaing40]

o!“‘J§ rUe(ri)dro,
Cc

6% [33,1<k§c>cos<zqo->

- [Ci,&k&)

105
-—7;%k§a‘4c0$2¢*)c032¢*)coik€)

— 5 o(kéo)cog 2¢ 7 )sin( k@} , (B16)

dSL r%Z{Ug(rﬁ)}osgrlZ

2
cog2¢){C3 o(kéo)sin(ke)

a'ba'c

~ 327 (kd) <_

—S§,o<k§c)cos<k€)}. (B17)

where funct|on§2 1(X), cs 2.0(X), Sf{ o(X) are determined by
Egs.(39), (40), and(41), respectively, and functlorﬁzo(x)
and§ o(X) are determined by Eq$75) and (76), respec-

tively. Substitutinge™— ¢+ 7/2, one obtains the analo-
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d_4L r3Up(rpdr,

b

Op0¢

l 3 5 —
6007 (k) 5| Sa(kép)cog2¢7)

+| C3 o(Kép)

105
——5(kép) “*cog2¢") |cog2¢ " )cogke)
+S; o(kép)cod 26 ") sin( k€>] : (B18)
d? f:riz{u;;mz)}oscdrlz
1 owo (f)z N
~= 3590, (kd)®| 5| cos2¢™)
X{cg,o<k§b>sin(k€> - S5 o(kép)cogko)}.  (B19)

Substituting Egs(B16) and (B18) into Eq. (24) and taking
into account Eqgs(7), (14), and(30) one obtains Eqs.34)
and(35) for the coefficients)52 ) andM 7% ) . Substituting
Egs.(B17) and (B19) into the fourth term of Eq(25), ne-
glecting the other terms in Eq25), substituting Egs(15)
and(25) into Eq.(7) and, finally, substituting the first line of
Eq. (7) into Eq. (72), one obtains Eq(73) for the largest
oscillating term in the free energy.

2. Dispersion interaction of two identical chiral molecules in
end-to-end orientation

Next let us estimate the dispersion interaction of the two
identical chiral molecules in the end-to-end orientation, pre-
sented in Fig. (a). Accordingly to Eq.(28), the dispersion
interaction of an arbitrary laydr of the first molecule with
an arbitrary layet, of the second molecule in this orienta-
tion is determined by the following expression:

Jod*

[(FiptAZ)2+AXE+AY2]3
(B20)

AUg(rp,t7t

+):_

whereJ, is the constant having the dimension of energy. In
correspondence with Eq$A9) and (A10), the parameters
AX,, Ay,, Az, are determined by the following expressions:

Ax,=—20,sin(kt™ + ¢ )sin(kt* + ¢ *)cog a/2)

gous expressions for the other side-by-side orientation pre-

sented in Fig. (b):

— 20 codkt™ + ¢ )sin(kt™ + ¢)sin(al2),
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Ay,=20,cogkt™ + ¢ )cogktt + ¢™)sin(a/2) sion interaction of the layers and its first and second deriva-

_ tives with respect to the angle in the casen=0:
+20sSin(kt™+ ¢ )cogktt + o *)cog al2),

(52 AU *) Jod* (B22)
rpot t)——mm—,
. e [riz+2t7]°
Az,=2t".
Expanding expressioiB20) in the small parametetr/d AU ot t+)%6‘7b00\]0d65ir‘(2kt_+2€°_)
= \/opodd and taking into account the only first nonzero e d? [r+2t7 18
term, one obtains the following expressions for the disper- (B23)

(o2+02)cog 2kt +2¢7 )+ (0o— o) cog 2kt " +2¢™)
[rip+2t 18

AU(rip,t7,t7)~330d* . (B24)

One notes from Eq(B22) that at zeroth approximation the a;11a,, b;17b,, ¢;11¢,1 Uy, @= /2 is presented in Fig.
interaction of an arbitrary layer in the case-0 is indepen-  18. In correspondence with the molecular model presented in
dent of the rotation of molecules around their principal axessec. Ill, the coordinatesxf,,y,,z,) of an arbitrary layet,

g anda,. At the same time, its first and second derivativesof the achiral molecule and the coordinates,§/.,z.) of an

with respect to the angler [see Egs.(B23) and (B24)]  arbitrary layett, of the chiral molecule in this orientation are
change their signs after the rotation of any molecule by thequal to

angle 7 around its principle axis. Therefore, the total inter-
action of molecules in the end-to-end orientatldp is also }
independent of the rotation of the molecules around their Xn(7:tn) —tpsin(y/2)

principal axes, and its first and second derivatigsandU?; Ya(y,th) | = 0 (Cy
with the respect to the angtein the casex=0 change their

signs after the rotation of any molecule by the angle Zn(7:tn) tacos v/2)
around its principle axis. Expanding expressigi4) for the
minimal distanceé,(0) between the two molecules in the Xe( v,te) — osin(kt,)cog y/2) + t sin( y/2)
small parameteo/d, one obtains

Ye(wte) | = I'et ocogkty) )
E0)=€+d[1-2(ac/d)*+-- -], (B29 Z(yto) osin(kty)sin( y/2) +t.cog y/2)
c2
[£0)— €] t~d [1+2(oc/d)?+---]. (B26) (€2
o

Therefore, after the rotation of any molecule by the angle
expressiongA15) and (A16) for the derivativest,(0) and e
=(0) also change their signs, keeping approximately the i
same absolute valugsvith an error ~(o/d)?]. Thus, the
integrals(24) and (25) appear to be approximately equal to
zero in the end-to-end orientation with the same error
~(o/d)*. Substituting Eqs(24) and (25) together with the
third line of Egs.(14) and(15) into the third line of Eq(7),
one obtains Eq(30). In other words, one may neglect the
interaction of short molecular axes with each other.

APPENDIX C: MINIMAL DISTANCE BETWEEN ACHIRAL
AND CHIRAL MOLECULES IN SIDE-BY-SIDE
ORIENTATION <

Let us determine the minimal distance between an achiral é
molecule[see Fig. &)] and a weakly twisted quasiuniaxial
chiral molecule[see Fig. )] in the parallel side-by-side FIG. 18. Schematic illustration of the contacting achiral and
orientation presented in Fig(d. A schematic illustration of chiral molecules in side-by-side orientation;]7a,, b;]1b,,
the contacting achiral and chiral molecules in the case;11c,]uy,, ¢=m/2.
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where the parametey, ranges from—¢,/2 to £,/2, the pa- whereA{=¢.—¢{,. One notes that Eq¢D1) and (D2) fit
rametert. ranges from—£./2 to €./2, and the parameters  Egs. (B14) and (B15), respectively, in the two limit cases:
andk define the twist of the chiral molecule. Penetration of aA€¢/d=0 and|A¢/d|>1, where the parametér equal the
layert,, of the achiral molecule into a layég of the chiral minimal length ¢, or €.). The intermediate case ranges
molecule is forbidden. The minimal distance between layerseally from A¢/2=0 to |A€¢/2|~r* with r* is the distance,
is the average diametei=(d,+d.)/2. Accordingly to Eqs. where the dispersion potential vanishes. Since the dispersion
(C1) and(C2), the corresponding distance between the mojpotential vanishes very quickly, the intermediate range is
lecular centersé,(v.t,,t.) satisfies the following con- very small. Therefore, one can restrict his consideration to
straint: the case\ ¢ =0 without losing any homogeneous features of
the potential. Substituting EqD?2) into the fourth term of
d2=[£ne( 7.ty te) + o cogkte) 12+ o?sir?(Kt,) +th Eq. (25) and taking into account Eqg7), (15), and(30), one
) . . obtains in the casA{¢ =0 Eqgs.(53)—(56) for the coefficients
— 2t t.cosy+ts—2at,sin(kty)siny. (C3 Jg?gc) , M(%c()r?c) , Jg(()rfc) , andMg?ﬁc) _
At the same time, the expression for the first derivative
The minimal distance between two moleculgs,(y) corre- AU/ (t,,tc,r,) of the interaction between a layer of the
sponds to the maximal valug,(y.t,,tc). Maximizing  achiral molecule and a layer of the chiral one with respect to
Enc 7 tn 1) in Eq. (C3) separately by the parametégsand  the angley in the casey=0 differs from its analodB8) for
t~=(t.—t,)/2 in the casey=0, one obtains two identical chiral molecules. Substituting Eq€1) and
(C2) into Eg. (B3), where it is assumedx.=X.—X,, Ay,
=Y.~ VYn, Az;=7.—z,, expanding the resulting expression
in the small parameter/d and taking into account the only
first nonzero term, one obtains

¢
tn=tC=i§, (C9

where the parametef is the minimal length {,, or €.). .
Substituting Eq(C4) into Eq. (C3), one obtains Eq49) for AU’ (t, te Fng)~— 24(old)2J dGM_
the minimal distance between molecules and (@) for the nevnerne O [r2 4 (2t)2)
derivative of the minimal distance with the respect to the (D3)

angley in the casey=0.
gley & Substituting Eq(D3) into Eq.(29), one obtains the function

U, (rnc). Defining the parameters=kr,,. andt=2kt™, in-
tegrating the functiorrfzurgc(rnc) with respect to the vari-
abler . and using a constrairf27), one obtains

o 2
Let us estimate the dispersion interaction of the achiraj—4 fﬁcUéc(rnc)dfnﬁ—l?Jo(g) (kd)3ﬁ cogkl,)
molecule with the chiral one in the side-by-side orientation 3 d d
presented in Fig.(t) (see also Fig. 18 Performing the same
calculations as in Appendix B, one obtains that the interac- * * rt
tion AU, (rne th,te) between a layer of the achiral mol- kag drkodt (r24+12)5°
ecule and a layer of the chiral one and its second derivative min
AU (Fne tn te) with respect to the angle in the casey (D4)
=0 are determined by the same E(B7) and(B9), respec-
tively, wheret™ = (t.*t,)/2. Indeed, at zeroth approxima-

APPENDIX D: DISPERSION INTERACTION OF ACHIRAL
AND CHIRAL MOLECULES IN SIDE-BY-SIDE
ORIENTATION

min

Equation(D4) has a simple extrapolation in the three limit

. . _ ases
tion these expressions are the same even for two achiral mol-
ecules. Substituting Eq$B7) and (B9) into Eq. (29), one P T
obtains in the suppositiofi,>d and ¢.>d the following 9 McUne(Mnc)drne
expressions for the total interaction between an achiral mol- min
ecule and a chiral one and its second derivative with respect 0, <,
to the angle between the long molecular axes: 1057 (o2 d \4¢
——J(,(—) (kd)‘l( ) —ccogkly), €h={;
5 ~ 256 d gmin d
U w—S—WJ (i) ﬁ+2J A—gdSJW e 1057 [o)\? d \%
"o 8 Oy d Od " Jaee[r2+(2t)2P — WJO(H) (kd)l(g ) Eccos(kh), 0>,
(Dl) min (D5)
5 d\7[€,\3 As was already discussed, the intermediate case corresponds
Une~ E‘JO(r ) (F) to the very small range of the parametéfsand €. due to
ne the shortrange of the dispersion potential. The difference be-
gg_gﬁ w dt tween the limit cases in EGD5) has a simple explanation.
+Jo—73 7J > > (D2) Indeed, the chiral part of the dispersion interaction is associ-
d Atz [rp+(2t7)7] ated with the position of the ends of the chiral molecule.
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Thus, the small achiral molecule does not “feel” the ends of 9

the large chiral molecule, and the expressiB®) is there- Shia(r)=— 5’ {a®"1CK(ar)}, (E®
fore equal to zero. Conversely, the long body of the achiral a=1

molecule suffers the double effect from the ends of the short

chiral molecule, with respect to the case of the equal molecuene obtains the following expressions for the integ@iér)
lar lengthes (,=¢.). In any case, the sign of the chiral andSj(r):

interaction does not depend on the respective length of both

molecules and depends only on the length of the chiral mol- 1 g\k1
ecule. Therefore one can restrict his consideration to the case Ckn(r) (—1)"tk= 1( ) {Trrzn‘lexp(—r)},
A€¢=0 without losing any chiral properties of the potential, ror

as well as homogeneous ones. Substituting EQS) into (E9)
Eq. (24) and taking into account Eqé7), (14), and(30), one

obtains in the casA ¢ =0 Eqgs.(51) and(52) for the coeffi- 1 g\ 1
cientsJ3{Z, andM 52, . CK o) =(—1)"" k" 1(; 5) [—rZ”E*(r)
APPENDIX E: INTEGRALS CEK (X) AND S}, ,(X) n-1 _
. _ . . +2, (2i+1)1r2n2-24 (E10
Let us determine the integralS,, ,(x) and S;, ,(x) as =0
follows:
19 k—1
Crnn(¥)=2%(k— 1)'f d f at o SHn=Cre l<r f”) [an—lE—(r)
X r
m [r2+ e -
. ) 2i)!r2n_2i_2], (Ell)
=f Ck(ryrmdr, (E1) izzo(
X
k=1
. . ) ) rMtNsint Sz (r) ( 1)n+k 1 19 {wrznexp(—l’)}
Smn(X)=2 (k—l)!j drf dt——— n+l roor '
’ x Jo o [r24+t3k (E12
zf SK(r)r™dr, (E2)  where E(r) is determined by Eq(42). For example, per-
X

forming differentiation in Eqs(E9) and (E11) in the casen

=0, one obtains the following expressions for the integrals
where the |ntegraI§:n(r) and Sq(r) are determined by the Ck(r) andSO(r)

following expressions:

n 2k—1 \pk
c:k(lr)zzk(k—l)ljmM (E3 cKry=exp—r) > — (E13
n Jo [r2+t3¢ i St
« tNsintdt k-1 k k-1 k
sﬁ(r)szk(k—l)!f e (E4) X! ;
rN=Ee-(r +E*(r —
o [ro+t] SO( )=E( )I %/2 2i+1 ( )i:[(gl)/z] r2i
Using the obvious recurrent relations k=1 Sk
- > (E14)
&Ck(r) i=[k2]+1 r°
Chin=———, (E5) _
ar where the square brackets denote the integer part of the cor-
responding value and the coefficieM&, XX, YX, andzk
K are determined by the following expressions:
+1 Sn(r)
Sy ()=~ : (E6)
ar
. m(i—1)!
and the recurrent relations wWi= (2k—i—=1)!(2i—2Kk)!""’ (E19
J il
Ck 1(r):_ {a2k—n—1sk(a,r)}’ (E?) k_ (ZI)
T dal " X= k22 @4i—2krzn’  (EO
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K_ (2i—1)!

Y= k2 i@ 20 (E17)
 @i-2n G oj-2i-nn
“=ek 20! A (o2l E9

Substituting Eq(E13) into Eq.(E1) and using the relation

-1 -1
rJ

exn—r)d exp(—r)

f r! (i—=1)!
E|(—r)
BRG]

Z
(- (E19

one obtains the following expression for the integiénlyo(x)
in the case&k—m=1:

2k—m—2 k_
ChoX)=exp—x) 3, =7+ Ei(=x)Vy(k—m),
= X
(E20

where the functior\/k(a) and the coefﬂmenwmj are de-
termined, respectively, by the following expressions:

2k—m—1 k

= 2 ooy (E21)
WE =1 4 —1)1VE(p), (E22

where p=k—m if j=1,...,k—m—1), or p=j+1 if |
=(k—m), ..., (Zk—m—2), and where the coefficienwg‘
are determined by EqEL5. For example, substituting
=5, m=4 into Eq.(E20), one obtains Eq40) for the inte-
gral C40 Substitutingk=5, m=2 into Eq.(E20), one ob-
tains Eq.(75) for the mtegraIC

Substituting Eq(E14) into Eq (E2) and using the rela-
tions

E~(r) E}l (2j+1)!

(20)! =0 r2+2

+ |7l .
+E (r) (2))!

(2)! =0 r2+1

E(r)
f Tz dr=-
i—1

< 2Q(r)
(2|) 2

(2

(2!
+1)r2j+1

(E23
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E~(r) 'Z(2j+1)!
(i—1)1 & 22

E*(r)
f 2 dr=—

E* () '« (2))!
(2i—1)! b r2i+t

i—1

(2))! 2Q(r)
(2| 2 21+1)r21+1+(2i—1)!’
(E24)

where the functiorQ(r) is determined by Eq43), one ob-
tains the following expression for the mteglﬁékﬂ(x) in
the cas&k—m=0:

2k—m—1 k

Smo()=E" () 2, it ET)

2k—m—1 k

m
Zm
2

+2Q(X)R (k—=m,k—m+1),

(E25

where the functiolR},(a,8) and the coefficientX, ;, Y&
Zk

sions:
2k~ mxzk:; 2k—m 2k_:—.1
m+1 m+i
(a B)= E 20)! - izﬁ m, (E26)
=(2j+1)!Ri(p.p+1), (E27)
Y i=(2)!R(p,q), (E29
1
Zn = 2] > [22DIR(P.a)+ 8peZ0 ], (E29)
where p=k—m, q=p+1 and d,q=1 if j=0,...,k-m
—1), orp=j+1,q= pandépq—o i = (k- m), .. (

—m-—1), and where the coefficients, Y, and Zk are
determined by EqSiEE16)—(E18) respectlvely For example
substitutingk=2, m=2 into Eq.(E25), one obtains Eq41)
for the mtegrale‘lo Substitutingk=2, m=1 into Eq.(E25),
one obtains Eq(76) for the mtegral%‘;0

Performing differentiation in Eq(E12 in the casen
=k0, one obtains the following expression for the integral
Si(r):

2k—3 F!(
siry=exp(—-r) > —,

i=k—1 r' (E30)

where
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(i—1)!
(2k—i—3)1(2i —2k+3)!! °

Fi= (E31)

Substituting Eq.(E30 into Eq. (E2) and using relation

(E19), one obtains the following expression for the integral

S¢,1(x) in the casek—m=1:

Y -

F';mjs i=k=m-1 (—])!

(L)Y j—1)1GK(G+1) if

PHYSICAL REVIEW E 67, 031704 (2003

2k—m—4 Kk .
Sha=exg(—x) > —H+Ei(-x)Gn(1),
j=k=m—-1 X

(E32)

where the functiorGy,(a) and the coefficienEy, ; are deter-
mined, respectively, by the following expressions:

2k—m-3 k

I=a

GK(a)=

(E33

if j=(k-m—1),...,0
(E34)

i=1,...(2k—m—4),

where the coefficients¥ are determined by EGE31). For example, substituting=5, m=4 into Eq.(E32), one obtains Eq.

(39) for the integralS; ;.
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of the one-component liquid crystal. smaller than the main monotonic tefB15). At the same time,
[39] One may apply the Parsons approach to the dilute solution of it may be proved that all the oscillating terms that have been

the minor spiral pieces in the coiled system. missed in Eq(B15) are much smaller than any oscillating term
[40] In Eq. (B17) we keep only the terms oscillating with the mo- in Eq. (B17).
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